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DESCRIBEYOUR DATA. 47
STATISTICALLY |

Consider a set of data (collected from your experiments, or
whatever source), you may want to describe /summarize/ fit your
data according to a model with some adjustable parameters.

The model can be a collection of easy-handling functions, such as
polynomials, or Gaussians, etc, and reuse the model somewhere
else with some extrapolation or interpolation, or even use it to
predict the next out coming data point.

Or the model can be derived from the underlying physics theory,
and the adjustable parameters are related to some physical
parameters. We can fit to the data in order to provide an estimate
of the parameter and probe to the underlying physics information.



DESCRIBE YOUR DATA,
STATISTICALLY (I

A general approach is usually carried out by defining a “merit
function” (or the loss function, if you prefer the same language as
we introduced in the ML lecture) which represents the agreement
between the model with a given set of parameters and the data.
The best-fit parameters can be estimated by minimizing or
maximizing the function.

One of the common issues is the data is not exact in general. I
contains uncertainties. These uncertainties have to be taken into
account in the fit for a proper estimate.

On the other hand, we may also want to know how accurate your
measurement is, ie. the uncertainties of the resulting best-fit
parameters are also needed to be calculated.



THE PROBABILITY

m Probability is the measure of the likelihood that an event will
occur, quantified as a number between [0,1]:

- 0 =1impossibility; 1 = certainty.
~ The higher the probability of an event,
the more likely it is that the event will occur.

m Classical probability is defined by

p Number of favorable cases
o Number of total cases

- Assuming all of the cases are equally possible.

~ This only works for discrete cases rigorously.

—~ Problems in continuous cases (to be discussed).
A »
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CONTINUOUS CASES?

m A typical example of problematic probability definition in non-
discrete cases, e.g. the Bertrand’s paradox:

- Remember our homework assignment — given a randomly
chosen chord on a circle, what is the probability that the chord’s
length is larger than the side of the inscribed triangle?

The "random endpoints” method

Choose two random points on
the circumference of the circle and
draw the chord joining them. The

probability that a random chord is
longer than a side of the inscribed
triangle is /3.

.35 this always 4rue?



CONTINUOUS CASES? (2)

m If one considers slightly different methods, for exampl: |
The "random radius"” method

Choose a radius of the circle, choose a point on the
radius and construct the chord through this point and
perpendicular to the radius. The side of the triangle
bisects the radius, therefore the probability is 1/2.

The "random midpoint™ method

Choose a point anywhere within the circle and
construct a chord with the chosen point as its midpoint.

The chord is longer if the chosen point falls within a

U circle of radius |/2.Thus the probability is 1/4.

Y “Random choice” is not a well defined concept in this case; some classical probability
concepts become arbitrary until we move to discuss the probability density functions.
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FORMAL DEFINITION OF
PROBABILITY

®m Mathematical probability: define Q to be the set of all possible [/
elementary events X;, which are exclusive (ie. occurrence of one of
them implies none of others occurs). The probability of the
occurrence of Xj, P(Xj;), to obey the Kolmogorov axioms:

(a)P(X;) > 0 foralls
more complex probability
(b)P(X;or X;) = P(X;) + P(X;) expressions can be deduced
(c) Z P(X;) =1 for non-elementary events.
Q2

VWVe require operational definitions which allows us to
measure probabilities: Frequentist probability and

Bayesian probability. Both of them satisfy the
Kolmogorov axioms.




FREQUENTIST PROBABILITY- /4

N

‘? lr\ .....

m Frequentist probability is in fact, defined along experiments.
Consider # of events of type X is n, and total # of events is N
obtained from a series of experiments, then the frequentist

probability that any single event will be of type X can be
defined as

Pl = T

N =00 IN

m Obviously this definition requires an infinite number of
experiments, and it cannot be the real case! But as long as it is in
principle possible always to perform one more experiments, a
targeting accuracy can be obtained.

m However, this definition implies an important restriction: it can be
only applied to repeatable experiments!

Z\ 8
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BAYESIAN PROBABILITY -

In order to define a probability that can be applied to non-
repeatable experiments, we have to replace it by something else:
the degree of belief, which is the basis of Bayesian probability.

The idea is to determine how strongly a person believes that X will
occur by determining how much he would be willing to bet on it,
assuming that he wins of fixed amount of X does later occur and
nothing if it fails to occur.

P(X) is defined as the largest amount he would willing to bet,
divided by the amounts he stands to win.

Although all these statement may sound strange, this definition
does obey the Kolmogorov axioms.



BAYESIAN PROBABILITY () /4

é '

Bayesian probability is an interpretation of the concept of
probability, which is interpreted as reasonable expectation
representing a state of knowledge or as quantification of a
personal belief.

Properties of (subjective) Bayesian probability:

It is as much a property of observer as it is of the system being
observed.

[t depends on the state of the observer’s knowledge, and will in
general change as the observer obtains more knowledge.

For example, P(tomorrow is the end of world) and P(God does
exist) do exist, which cannot be defined in frequentist way!
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Give me a probability you think you will
become a billionaire in 10 years.
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PROPERTIES OF
PROBABILITY

m For any probability satisfies Kolmogorov axioms, the following |
discussions do apply.

- Consider a set A of elementary event X;, we denote P(A) as the
probability that an Xj; in set A occurs.

- For two non-exclusive sets A and B, the probability of an event
occurring in A or in B, or in both can be obtained by the
addition law:

P(Aor B)=P(A)+ P(B) — P(A and B)

¢ ¢
B — | —
‘ whole space
S 13




CONDITIONAL
PROBABILITY

m Then the conditional probability, P(A | B), the probability that an |
elementary event, known to belong to the set B, and is also a
member of set A:

P(A and B) = P(A|B)P(B) = P(B|A)P(A)

‘ ‘ ¢
— ‘x

o X
Sets A and B are said to be independent
(occurrence of B is irrelevant to the occurrence of A) if

B P(A|B) = P(A)

A whole space P(A and B) — P(A)P(B)
i
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BAYES THEOREM —

m Bayes theorem describes the probability of an event, based én |
prior knowledge of conditions that might be related to the event.

® A common usage is to invert conditional probabilities.

P(A|B) = P(B|A) - P(A)/P(B)

the likelihood of observing event B given that A is true.

P(B A) e.g. A: typhoon is landing

B: it is raining

the posterior probability of A is true given observing B.
P(A‘ B) e.g. B: it is raining

A: typhoon is landing

|5
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BAYES THEOREM FOR

DISCRETE EVENTS

m The theorem which links P(A | B) to P(B| A) is the Bayes theorem,

which follows the definition of conditional probability:

P(A‘B) — P(B‘A) ' P(A)/P(B) This is kind of obvious from

the formulation, but it may be
totally straightforward if one

B

whole space

considers a real case.

Remark: using the above Bayes theorem
does not imply you are using a Bayesian

probability. The Bayes theorem applies to
Frequentist probability as well.




TERMINOLOGY

When involving hypotheses testing (e.g. the idea/assumption is / '
true), we are entering the Bayesian framework. Therefore the Bayes
theorem can be written as

P(O;1X%)=P(X°]0;) x P(0;)] P(X°)
P(0;1X9): the posterior probability for hypothesis 0;, given data X°
have been observed.

P(X?| 8;): the probability of obtaining the observed data X9, given
hypothesis 8;, which must be known.

P(0,): the prior probability and represents the knowledge or
degree of brief before the experiment was performed.

P(XY%): normalization, since X; P(0; | X°) = P(X?), but this may not be
known. If this is the case, a weaker form is usually given by

PO;1 X%) <« P(X"] 0;) x P(O;)

|7






BAYES THEOREM EXAMPLE 7/

B Let’s consider a classical problem — suppose a drug test is 99
sensitive and 99% specific:

- P(+11)=99% positive results for drug users
...... with a failing detection rate: P(- | u)=1%

- P(-117)=99% negative results for non-drug users

...... with a false alarm rate: P(+ | @)=1% P N +)

® Suppose that 0.5% of people are pégL/L:)/‘ (0.495%)
users of the drug. What is the probability /‘< P(IU)

P(U) 0 n-
P(ul+), a randomly selected individual <0-5% (%) e (q.005%)
with a positive test is a user? 20 o0y —® 385
P(ul+) = P(+[u)P(u)/P(+) -
P(-|0)
= P(+|u)P(u)/[P(+]u) P(u) + P(+[a) P(@)] R @
\’

(98.505%)

= 0.99 x 0.005/[0.99 x 0.005 + 0.01 x 0.995]
Z\ ~ 33% +'s a5 \ow as %% w Fact! |
- P



(I A

Suppose that 5% of people are users of the drug. What is th
probability P(u | +) now?

P(ul+) = P(+|u)P(u)/P(+)

= P(+|u)P(u)/[P(+|u)P(u) + P(+|u)P(u)]
= 0.99 x 0.05/[0.99 x 0.05 + 0.01 x 0.95]

~ 847% Now +the chawnce of getting 2 dmg usey 1s much (rﬁg(ner!

Point #1 Point #2
The chance of a positive test = a The probabilities discussed here
user depends on the absolute rate can be defined a frequentist
of drug users! probability.

| All these sound very reasonable, but in reality it is not so
z\ easy to know the absolute rate of drug users P(u)!
™. P
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BAYES THEOREM EXAMPLE _#
(Il

B Bayes theorem gives us a nice method to access the underlying
probability. But let’s practice a “no-so-natural” example:

m Somebody gave you a “magic coin”, and claimed that it only
shows head in coin tosses. But you only allowed to perform the
experiment (toss it!) for 3 times and all tosses indeed show the

head, e.g.

- P(all 3 heads | magic coin) =1

- P(all 3 heads | normal coin) = (0.5)3 = 0.125
— P(not 3 heads | magic coin) =0

- P(not 3 heads | normal coin) =1 - 0.125 = 0.875

® Question: given the experimental result, what is the probability of
this coin is really a magic coin? ie. what is

| P(magic coin | all 3 heads)?
Z\ »

21



BAYES THEOREM EXAMPLE '
(IV) A

m Answer: we do not know! P(magic coin | all 3 heads) cannot be 4
calculated since we do not know the prior P(magic coin)!

- If you really believe in magic, e.g. P(magic coin)~0.99
P(magic|3 heads) = P(3 heads|magic) P(magic)/P(3 heads)
= 1.0 x 0.99/]0.99 x 1.0 4+ 0.01 x 0.125] =~ 99.99%
- If you do not believe in magic, e.g. P(magic coin)~0.01

P(magic|3 heads) = P(3 heads|magic) P(magic)/P(3 heads)
= 1.0 x 0.01/[0.01 x 1.0 + 0.99 x 0.125] ~ 45%
The result does depend on your degree of brief!

You may find this interpretation is kind of odd, given the prior is
Z\ something you cannot avoid when introducing Bayesian probability!
. y

22



COMMENT: THE PRIOR /4

The degrees of brief in a hypothesis depends on the experimental '/
results and the prior probability before the experiment. Or, one can say
that Bayesian statistics is subjectivity by definition.

Surely for the physicists this is not very appealing; people tried
very hard to look for a way to avoid introducing prior into the
experiments, but without a real success.

Bayesian may comment that it is actually intersubjective, i.e.
the real nature of learning and knowing physics.

Frequentist approach is generally preferred by a large fraction of
physicists (probably the majority, but Bayesian statistics is getting more
and more popular in many application, also thanks to its easier
application in many of the cases).

23



INTERMISSION

m The probabilities can be either Frequentist defined or Bayesian
defined. Try to identify some of the probabilities used in daily life
if they can be defined in Bayesian way or in Frequentist way:.

mint

pro

ne previous two Bayes theorem examples, the resulting
pabilities are all depending on the given prior probability

(on.

and see how it works.

B

y). You can try to derive the exact relationship between
P(ul+) versus P(u)

P(magic coinjall 3 heads) versus P(magic coin)

24



Time for all lovely
distributions!

25



CONTINUOUS RANDOM 47
VARIABLE |

A random event may be associated a random variable X, which
takes different possible numerical values Xj, X>, ..., corresponding
to the different possible outcome.

Those probabilities P(X3), P(X2), ..., form a probability
distribution.

When an experiment consists of N repeated observations of the
same random variable X, it can be considered as the single
observation of a random vector X = {X7, X, ...., Xn}.

Instead of probability for discrete cases, now we can generalize
probabilities of events to probability distributions of random
variable, using the tools like probability density functions.

26



PROBABILITY DENSITY
FUNCTION (PDF)

Consider a random histogram of X, collecting the
data with a pistol shooting location for example.

The probability distribution of finding particles
at X is denoted by P(X), which is still discrete.

However it is more convenient to describe this 4
using a continuous function £(X) by introducing :
infinite small steps: it

P(X)
X)= 1
f(X) AX—0 AX
The probability density function f(X) represents
a probability density per unit array length of X.
The normalization

condition must be held: / f (X)dx — 1
X

_—

27



DRAWING GAUSSIANS

m Here are a briet example t4 |
of drawing Gaussian e 0 =05
PDFs with various width o
parameter. ZZ
m All of these PDFs should 0:4_
be normalized to have o
area = 1. 0.0-

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

gaus = lambda x,mu,sigma: np.exp(—0.5%(x—mu)*x*2/sigmax*x*2)/sigma/2*x0.5
fig = plt.figure(figsize=(6,4), dpi=80) ™ You can also take scipy.stats.norm!
X = np.linspace(-10.,10.,1000)
for w in [0.5,1.,2.,3.,4.]:
y = gaus(x, 0., w)
plt.plot(x,y)
plt.show()

/ 1305-example-01.py (partial)
[\ 28
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PROPERTIES OF
DISTRIBUTIONS

Several useful quantities which characterize probability
distributions. The PDF f(X) is used as a weighting function to
obtain the corresponding quantities.

The expectation E of a function g(X)is given by

E(g) = (g(X)) = / g(X)f(X)da

where Q is the entire space.

The mean y is simply the expected value of X:
= FE(X / X f(X)dx
The expectation of the function (X-u)? is the variance V:

VZO‘QZE((X—/L)Z):/Q(X 1)’ da;_/X2 X)dz — p°

29
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EXPECTATION OF POISSO

m The following example code is to calculate
the expectation of random variable n with
a Poisson PDF (or PME, probability mass P(n)
function) is u:

from scipy.stats import poisson

0.175 A

mu = 4.5 0.150 A
E = 0.
X = np.linspace(0.,15.,16) 0125
y = poisson.pmf(x,mu) , -
: - . Expectation:

for n,p in zip(x,y):

E += p*n 4-49966852764 0.075 -
print("Expectation:", E) 0050

0.025 A

fig = plt.figure(figsize=(6,6), dpi=80)
plt.bar(x,y) 0000
plt.show()

| / 1305-example-02.py (partial)
30
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COVARIANCE AND
CORRELATION

Covariance and correlation are two further useful numerical
characteristics. Consider a joint density f(X,Y) of two variables, the
covariance is the expectation of (X-ux)Y-puy):

cov(X,Y) = E((X — px)(Y — py)) = E(XY) — E(X)E(Y)
Another one is the correlation coefficient, which is defined by

corr(X,Y) = p(X,v) = VXY

OX0y
When there are more than 2 variables, the covariance (and

correlation) can be still defined for each 2D joint distribution for X;
and X;. The matrix with elements cov(X;, Xj) is called the

covariance matrix (or variance/error matrix). The diagonal elements
are just the variances:

cov(X;, X;) = BE(X7) — E(X;)* = 0¥,

31



COMMONLY USED DISTRIBUTIONS..
BINOMIAL

]

;..
% N
/ |
‘ ~ / |

."/

R

/‘
#%
y
\ ‘g

Consider a distribution of “# of successes” with N trials, While
each trial has a probability of success p, which should follow the
binomial distribution:

N
P(n;N,p) =

n!(N —n)

(1 —p)h

Average: E = (n) = Np
Variance: V = 02 = (n2) — (n)2 = Np(1-p)

Frequently used for efficiency estimation with a limited size of
sample, in this case the efficiency € = (n)/N = p, the uncertainty is

1 — R k:
UE:\/G( €) Remar

N os — 0 whene —=0o0r1

given by

32



RANDOM EXTRACTION

B Suppose you have a bag of marbles, there are
3 red ones and 7 white ones. Let’s define a
“success”, which is the extraction of a red
marble out of this bag:

- Red: p =3/10
- White: 1-p =7/10

® Note the “success” can be finding
an event passing your selection criteria.

B Suppose you can only do the extraction for a fixed N trials, then
the # of successful trials n should follow the binomial
distribution given in the previous slides!

When you are doing such an extraction continuously,
the n success becomes Poisson distribution.

A 33
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GENERATING BINOMIAL

FROM THE PRINCIPLE

m Let's use random number to mimic the

random extraction and see if our resulting

distribution matches to the binomial.

m Set p =0.3, N =10. The resulting # of
success n should distributed like this:

2500 A

2000 A

1500 -

1000 A

500 ~

p, N=0.3, 10
n = [np.sum(np.random.rand(N)<p) fo

fig = plt.figure(figsize=(6,6), dpi
plt.hist(n, bins=10, range=(-0.5,9.
plt.show()

r i in range(10000)]

1=80)

5), rwidth=0.8)

/ |304-example-05.py (partial)




COMMONLY US
POISSON

m The Poisson distribution gives the probability of finding exactly n

events in a given length of time (and/or space), if the events occur
independently at a constant rate.

[t is a special case of binomial distribution with p—0, N—c, y = Np
as the finite constant; as g—co, the Poisson distribution converges

to the Normal distribution (Gaussian).

Properties:

variable: positive integer n

parameter: positive real number u

pre "

probability function: P(n)
n!
expected value: E(n)=u

variance: V(n)=u

Siméon Denis Poisson

35



COMMONLY US
POISSON (II)

m Poisson distributions apply to various phenomena of discrete
properties (those that may happen 0, 1, 2, 3, ... times during a given
period of time or in a given area) whenever the probability of the
phenomenon happening is constant in time or space.

[T
W,

DISTRIBUTIONS

m For example:

- number of soldiers killed by horse-kicks each
year in each corps in the Prussian cavalry
(quote: L. |. Bortkiewicz).

- number of yeast cells used when brewing
Guinness beer (quote: W. S. Gosset).

B The time interval between two successive events
is actually exponentially distributed, and this is
true for any Poissonian process!

[\ 36




COMMONLY USED DISTRIBUTIONS: i
FXPONENTIAL

Consider events occurring randomly in time, with an average
of A events per unit time.

The Poisson distribution describe the probability of N events
occurring in a time interval ¢; then the probability of no events in
time ¢ follows the exponential distribution exp(-At).

Properties:

1.6 : l '
variable: real number x 1.4l A=0.5
parameter: real numbers A L.2f —

Iune—,u 10 A=15
probability function: P(n) = ' go.s\
n! 06l
expected value: E(x)=1/A 0.4
variance: V(x) = 1/A2 0-21 \
%% 1 2 3 4 5
X
37



FROM POISSON TO
GAUSSIAN

converges to the Normal distribution (Gaussian).

m Even the value of g is only ~10, the distribution is already rather
close to a Gaussian with the same variance (V=0?=p).

0.40 , 0.14
— ] e Poisson u=10
0.351 =0 pu=2| 0.12 -~ Gaussian p=o" =10
-0 u=4
> 0.30+ e =3 >
— —
= o[o = 0.10
S 025l /| S
© T 0.08
20.20 2
S ‘D 0.06}
©
§ 0.15 '8
.04
S 0.10 5 %0
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COMMONLY USED D\STR\BUT\ONS;
NORMAL / GAUSSIAN A&

Gaussian is probably the most important /
well-known / useful probability distribution.

\ \\

Properties:
variable: real number x
parameter: real numbers y, o
probability function:
1 1 (z — p)?
P(x) = exp{ L= p) }

o\ 2T

expected value: E(x)=u

Carl Friedrich Gauss

variance: V(x)= ¢?

A Gaussian distribution with y=0 and 0=1 is the standard Normal
density function.

/\ | 3
T y



NORMAL / GAUSSIAN
DISTRIBUTION (1)

® The cumulative distribution of the standard normal distril
can be related to the error function, erf(x)

2 v 2
erf(x) — ﬁ/o e_t dt

m The error function is what you
can easy call within your
program, if you want to
calculate the integration of a
Gaussian!

(Dp,o?(x)




NORMAL / GAUSSIAN
DISTRIBUTION (1IN

® On the other hand, the error function can be easily used to derive
the coverage probability for a given standard deviation, e.g. 68.3%
of a normal distribution is just within +10 region, etc.

99,7% of the data are within

95% within
2 standard deviations

=
S
|

n ) ¢ 3 standard deviations of the mean

B(n) — B(—n) = erf <—

68% within
<«— 1 standard —>

V2

0.682 689 0.317 310 /\
0.954 499 0.045 500
0.997 300 0.002 699 // \'\
0.999 936 0.000 063

u— 3o n—20 H—0 7, u+o u+ 20 i+ 30
A 4l
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CENTRAL LIMIT | I—IEOREM’

Gaussian
samples
of size n
X_ .
X\
!
population sampling distribution
distribution of the mean

m If we have a sequence of independent variable X;, each from a
distribution with mean y; and variance ¢

® The sum S = XX; will have a mean Xu; and a variance Lo:.

m This holds for ANY distributions with finite individual means
and variances exist. The Central Limit theorem states, in the limit

of large N—oo,
—  Gaussian(x; up = 0,0 = 1)

42



CENTRAL LIMIT 1 HEOREN
(I |

15% -
0%~
5% -
el e . o - B B . adae _ahAA.  _—cbo
10 1" 12

O‘L"
8 | 9

5% -
m-
7 " 1% 1% 7
0%~
5%
R S Y * " . A _oabble,
g 19 20 21 2 23 24
15%
5%
N G T S W G G
5 s @ m 2 .

Ny - y - y - y - Yy -

16% =
10% =
™ A A A A
' ' L] ' L L ' L ' L ' L} ' ' ) ' ' L ' L L L] ) L L )
100000 025 050 075 100000 025 050 075 100000 025 050 075 100000 025 050 075 100000 025 050 075 100

) ' ' '
000 025 050 075
mean

A simulation
with binomial

distributions up
to N=512
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COMMONLY USED D\STR\BUT\ONS;,
POLYNOMIALS

Polynomials are probably the simplest way to model any unknown
distributions. Although different definitions of polynomials are
mathematically equivalent, but different polynomials indeed have
different behavior.

In particular, some of the polynomials (e.g. Legendre or
Chebyshev) are orthogonal, they usually have a better behavior
when expanding the order of polynomials.

Simple polynomials: N
Power series: qq + a1z + asx® + azx® + -+ - = Z apx”
k=0
Laurent polynomial: same as above but k can be negative.

44



POLYNOMIALS (I

legendre polynomials

\ ' | m Legendre polynomials: as general
—~ < solutions to Legendre's Equation,
and are azimuthally symmetric.

o5 / — e Py(x)=1, Pi(x)==x
| (n+1)Pyy1(x) = 2n+ DaPy(x) — nPp_1(x)

Pu(x)
o
|
|

|

\ w & =
T~ — —,
M oM M X
N Nt o St Yo ot

TPIPOD

1

-1 -0.5 0 0.5 1

== To(x) Ti(x) == Ta(x) == Ta(x) = Ti(x)

B Chebyshev polynomials: as a
sequence of orthogonal
polynomials and can be defined
recursively.

To(x) =1, Ti(z)==x
Thi1(x) = 22T, (x) — T, _1(x)

45




POLYNOMIALS (Il g A7)

B Probabilities should be always “positive defined”, b(ut this isno
the case for usual power-series based polynomials. The function’’
can easily go to negative and break the evaluation of probability.

m Bernstein polynomials are constructed with sets of non-negative
bases and are generally convenient for PDF modeling.

m Bernstein polynomials of degree n are defined by
l

B; ., (t) = tH1 - (0<t<1
in(t) il(n —1)! ( ) O=t<1)
m Examples:
Box(t) 4—" 1 B0 Poalt) T I Boa(t) = (1 —1t)*
B Bya(t) =2t(1 —¢)
Bo(t) =1—1 Bralt) ==~ Byo(t) = t*
Bii(t) =t |




If the success rate is
fixed, and # of trials -
are not too large

>

Binomial Exponential
Distribution The time/space  Djgtribution
interval /
Continues trails, fixed
rate in time/space
Pmsson
\ Distribution Large

g expectation limit
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Let’s come back to the Bayes theorem
and the Bayesian estimation now.
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BAYES THEOREM FOR
CONTINUOUS VARIABLE

Consider N independent observation of a continuous variable X;,
and for a continuous hypothesis 0 (for example, a physics
parameter like particle mass). The PDF for ith variable is fi(X;| 0).
The joint density function is

p(X]0) = Hf,LX|6’

Question: having made N observatlons from the distributions
fi(Xi| ), what can one say about the value of 0?

Answer: classically O has a fixed true value. So in principle when
fits (for example, maximum likelihood fits, will be discussed in the
next lecture) applied, the value of O can be estimated. But this is
not performed with Bayes theorem.
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BAYESTHEOREM FOR ¢
CONTINUOUS VARIABLE (1)

m However with Bayesian methods introduced, the distributions of 0

(using PDF of 0) can be taken to represent the degree of belief in
different possible value of 0.

®m We can obtain the form of Bayes theorem used in Bayesian
parameter estimation for a particular set of data, X:

p(@‘XO) p(XO|9)p(‘9)

where £ W

- p(O1XD) is posterior probability density for 0.

- p(X°1 0) is the likelihood function.

- p(0) is the prior probability density for 8. Again this is the
major problem in the evaluation!

~ The integration in the denominator is just a normalization

| factor.
L 50
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PRIORS AND POS TERIORS

The prior PDF represents your personal, subjective, degree of
belief about parameter 0 before you do any experiments. |
If you already have some experimental knowledge about 0 (e.g.
from a previous experiment), the posterior PDF from the
previous experiment can be introduced as the prior for the new
one.
But this implies that, somewhere in the beginning, there must
be a prior which contained no experimental evidence!
The very first prior can be thought of as a kind of phase space, or
density of possible states of nature. But there is no law of nature
that tells us what this density is!
On the other hand, the posterior density already represents all our
knowledge about 0, so there is no need to process this PDF any
further. But since we want a point estimate here, further operations

does require.
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BAYESIAN INFERENCE X

m The posterior probability is proportional to the product of
likelihood function times the prior probability for the unknown
parameters 0: N

p(0]1X°) o | | £i(Xi10) - p(6)

i=1

m Based on the posterior probability one can evaluate then the
average and variance of 0, as well as the point with highest
posterior density (HPD)!

- Note the value which gives the highest posterior density and
the average don’t coincide in general!

® By looking for the highest posterior density point (maximizing the
posterior probability), it is just the maximum likelihood estimator
with a flat prior p(0):

N
L(0|X°) x H £i(X;16) To be discussed in

| Pl the vex+ \ecturel
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BAYESIAN INFERENCE
EXAMPLE

L\ D

Consider a counting experiment and have been performed'for
once. The result is 3. Assuming the result should follow the
Poisson distribution. What should be the estimated value of u?

Let’s calculate the posterior probability with Bayes theorem,
assuming a prior p(u) and the likelihood function p(n | u) is
Poisson:

lune—u .................................................... > ansr’u p(,u)
plali) = 25 = pluin) = 2

If the prior is uniform, the normalization calculation is basically
straightforward:

< uteH B s
/O —pwdp=1 = plpn) = —

Wait s this just the Poisson distribution?
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BAYESIAN INFERENCE
EXAMPLE (1)

m Poisson PDF versus posterior probability?

n_ B— n_,B—
ute H o pteH
p(nlp) = — TS TUy—
n .
= - o 024r
| 0.22F . Il 0.22F .
ey s given u = 3, S oo givenn = 3,
O 0.18 . . o 0.183— . .
F finding n o finding
0.141~ 0.14[
012 . 012 This is posterior
0.1 Th’S ’S PDF 0_13_ ol o
2ok of n! ook probability of M,
0.06F- 0,06 w/ uniform priar!
0.04 0_04:_
0.02 0.02F
0 R I A A /A AT A WO A bl
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
n u

» Here the value H=3 has the highest posterior density, by
A - maximizing p(U|n). But the mean is not 3 but 4!
y

54



BAYESIAN INFERENCE Yy
EXAMPLE () |

If we repeat the experiment again and obtain the second result:
n =5, what would be the posterior probability?

Similar the expression can be given by
S ,— M
= gg P (:u)
p(lu‘n — 5) — o0 Iu5e—,u
Jo Bsr—p(p)du
But now the prior p(u) is not “flat” anymore. Since we already
have the first experiment, we can use the posterior probability of

the first experiment and the prior of the second experiment.

Regardless of the normalization term, the resulting posterior
should be

Here the value P=4 has the
r highest posterior density,
5! 3! by maximizing p(U|n).

ple ™ pteH

p(p[n =5) x
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REPEATED USE OF BAYES
THEOREM

m Bayes theorem can be applied sequentially for repeated datz
observations: posterior < learning from experiments.

observation 1 observation 2 observation 3
Conditioned Conditioned Conditioned
rior : . .
posterior 1 posterior 2 posterior 3
POZPYiOT P; o« Py X L; Py x Pp X Li XLy P3xPpXL; XLy XLs

...accumulating more and more observations = multiply probabilities

® The observation modifies the prior knowledge of the unknown
parameters as if L is a probability distribution function.

® Note applying Bayes theorem directly from prior to multiple
observables leads to the same result:

A Piyoy3 =1y X Liyoy3 =Py X Ly X Ly X L3 = P3
P

56



COMMENT:
BAYESIAN INFERENCE

Bayesian point estimation is a coherent method which provides a

reasonable way to estimate parameters. But it involves two
arbitrary choices (issues):

Which prior PDF to use, and how sensitive is the result to the
choice? (e.g. taking “flat”, some theory function, or anything else)?

How to connect the posterior probability to the point estimate
(e.g. taking the HPD, mean, or anything else)?

Very difficult to work on multiple dimensional cases.

Well, one can increase the observations, the prior probability is

significantly modified by data — then the final posterior
probability will depend much less from the initial prior probability.

But under such a condition, using frequentist or Bayesian
approaches does not make much difference.

/\ | >/
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TOWARD THE NEXT
LECTURE

In this lecture we have discussed the basic concept of Bayesian
probability and Frequentist probability, and some commonly used
probability distributions.

Before ending we just discussed about how to use the Bayes
theorem to estimate the parameter of a given model. We have
shown the principle but no real application yet (no example code!)

This is because in many of the cases we are facing a more complex
problem of many experiment data and complex models.

In the next lecture we will introduction how to perform the
parameter estimation with many data points: the least square
estimator and the (extend) maximum likelihood estimator.

58



HANDS-ON SESSION

m Practice 01:
In the 1304—-example-03.py code we have generated a binomial

distribution from the “principle”. Now we can use it to approach a
Poisson distribution by setting a very large N and very small p, e.g.
N =10000 and p = 0.0003.

m Compare your resulting distribution and the Poisson distribution of
# = Np = 3 directly (you can take it from 1304—-example-02.py), do
you observe a good agreement?

Your
distribution?

Poisson
u — 3 0.10 4

0.05 A 0.05
0.00 - 0.00
0 2 4 6 8




HANDS-ON SESSION

Practice 02:

Again, following the discussion before, in a Poisson process the
time / space between two defined success would distribute
exponentially.

Suppose you are playing a phone/tablet game which has a character
lottery. Assuming the chance to get your target character is 5%,
perform this lottery with the random numbers for many times and
record the number of failures (not getting your target 5% character)
between two success (getting your character).

Plot the number of failures and show that it is actually exponentially
distributed!
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