XD ,
INTRODUCTION TO /|

NUMERICAL ANALYSIS |

e
Lecture 3-6: . \)
Modeling of Data: 0 \\: —)
Parameter Estimation /)
Kai-Feng Chen \ ,

National Taiwan University

l \
- '
rFa

N
(.

THEORY OF ESTIMATORS /.

Estimation may be considered as the measurement of a parameter
(which is assumed to be fixed, but unknown value) based on a
limited number of experimental observations.

Point estimation: determines a single value as close as possible to
the true value — for example a measurement of physics
parameter, such a mass, cross section, branching fraction.

Interval estimation: determines a range of values most likely to
include the true parameter value — for example an estimation
of upper/lower limits.

The main subject here is what is the exact sense in which “close”
and “likely to include”!

/\ 2

BASIC CONCEPTS 5/

To estimate a parameter, one first chooses a function of the ;
observations = a method for proceeding from the observations to
the estimate = the estimator.

The numerical value yield by the estimator for a particular set of
observations is the estimate.

A minimal example — assuming we have a Gaussian PDF with a
known ¢ and an unknown u. A single experiment gives a
measurement x, thus we estimate u as yest = x

The distribution of uest (repeating the
experiment many times) should give the
original Gaussian.

|2 x=”est

On average 68.27% of the experiments
will provide an estimate within the range:
p—o<ucst<u+o, thus u = pest + o.

3

THE LEAST SQUARES METHOD. £
[CHI-SQUARE METHOD

We have discussed already: consider a set of N observations of X3,
X>, ..., Xn, from a distribution with expectations of E(X;, 0) and the
covariance matrix V. By minimizing the covariance form:

Q> =) Y [Xi— BEX;, 0|V HylX; — E(X;,0)]

— [)_(—_E(X, NV X — E(X,0)]

it provides an estimate of the unknown parameters .

The covariance matrix V is not diagonal in general case. However
if the observations are independent, the covariance matrix is
diagonal. In this case the covariance form can be simplified to just

sum of squares
N

T E Xia 0 :
Q* = Z X — EQ)) where o7 (6) = Vj;
i=1 ¢

METHOD

Consider a set of N independent observations of X: Xj, X5, ..., X

They can be N events found in an experiment, and the joint PDF of

X 1S N

P(X]0) = P(X1, Xz, ..., Xn|0) = [] f(X:l0)
i=1

where f(X,0) is the PDF of any observation X.

When the variable X is replaced the observed data X, then P is no

longer a PDF. It becomes the likelihood function L, as a function

ot 0: L(6) = P(X\9)|

X=X0
The maximum likelihood estimate of the parameter 0 is that value
for which L has its maximum given the particular observation X.

THE MAXIMUM LIKELIHOOD.£7 7
METHOD (2)

In many cases it is convenient to take the logarithm, hence the
production of probability can be converted to a summation:

L) = LE) [F(Xil0) = > f(xi[0)

The “best fit” parameters can be obtained by maximizing the (log)
likelihood function, or solving the likelihood equation as below:

0

B N
o ;mf(xi,e) = o7 In L(X]0) =0

If the number of observations N is also a random variable, the
extended likelihood function is can be introduced:

N
o | In the most common case p
L(0) = p(N|0) 1_[1 f(Xil0) is a Poisson distribution

STILL ABOUT MINIMIZING /4

Both the least squares estimator and maximum likelihood
estimator requires minimizing or maximizing a function (“merit

.

function!”):

For the least squares estimator, this can be carried out by simply
supplying the corresponding Q? (x?) function.

For the ML estimator, it is common to supply —2InL instead. The
negative sign is required since common tools always does
minimizing, and the factor of two will matches the supplied
function as just sum of squares, if the PDFs are all Gaussians:

N
X, — u)?
—2In L = Z(OQ'LL) - Const.
i=1

This operation can be performed with the SciPy tools introduced
before, but we are going to use a different one.

7

I

INTERFACE WITH MINUH-

Minuit is conceived as a tool to find the minimum value of &
multi-parameter function and analyze the shape of the function
around the minimum.

The principal application is foreseen for statistical analysis, to
compute the best-fit parameter values and uncertainties, including
correlations between the parameters.

[t is especially suited to handle difficult problems, including those
which may require guidance in order to find the correct solution.

Minuit is historically (and still the case nowadays) the most used
minimization engine in particle physics.

It was a part of CERN software library (written in fortran), but it
has been rewritten in C++.

——

INTERFACE WITH MINUH-(

m Well, we are using Python as our core language. Thus
we will use a wrapper named “iminuit”:

http://iminuit.readthedocs.io/en/latest/

iminuit

Docs » iminuit) Edit on GitHub
1minuit
Installation
Full APl Documentation MINUIT from Python - Fitting like a boss
e Code: https:/github.com/iminuit/iminuit
9 e Documentation: http:/iminuit.readthedocs.org/

e Mailing list: https:/groups.google.com/forum/#!forum/iminuit

DigitalOcean

e PyPI: https:/pypi.python.org/pypi/iminuit
A complete cloud platform designed for e License: LGPL (the iminuit source is MIT, but the bundled MINUIT is LGPL and thus the whole
developers. package is LGPL)
Try it free - $100 credit e Citation: https:/github.com/iminuit/iminuit/blob/master/CITATION

Sponsored - Ads served ethically

What 1s iminuit?

Interactive IPython-friendly mimizer based on SEAL Minuit.

http://iminuit.readthedocs.io/en/latest/

INSTALLATION OF
IMINUIT

If you are using anaconda package, this can be done by typing this
under your terminal:

conda install iminuit

If you are not using anaconda, the package can be installed though
pip:

pip install iminuit

A quick test can be made by just import the iminuit module directly:

% python

Python 3.6.8 |Anaconda, Inc.| (default, Dec 29 2018,
19:04:46). . . .

>>> import iminuit

>>>

|10

STRUCTURE OF A MINUIT
PROGRAM

Let’s perform a 2D minimum finding with the iminut:

from iminuit import Minuit

def fcn(x,y):
return (x—8.)%*x2 + (y—6.)%*2

m = Minuit(fcn, x=3., y=4.) < initial values: x=3, y=4!
m.migrad()

for par in m.values:
print(par,":",m.values|[par],"+-",m.errors[par])

/ 1306-example-01l.py

The most important function is the “FCN”. The user of Minuit
must always supply a routine which calculates the function value
to be minimized or analyzed. This is not really different from the
SciPy tool!

WA\
)

,

e (l
WORKFLOW =/
Your main program
initial the Minurt
Assign fcn \
Define the parameters

1K

How a Minuit program runs:

- Your main program has to
initialize the Minut class and
provide your core fcn
function.

Send minuit

Commands Repeating
— Parameters have to be give par
defined, either floated or

fixed.

- Send the corresponding
commands to Minuit, which Converged!?
will call your fcn function to

btain the funct , obtain the output
obtain the ftunction values. error analysis
g 12

return f

The corresponding terminal output:

Sksk sk ok sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk k
* MIGRAD *
Sksk sk ok sk sk ok sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk

kkskokokokokokokok ko kk sk ok sk Sk sk ok sk ok >k ok >kck >kok >kok skok >kok >k k sk sk ok sk ke sk ok sk sk >k sk >k sk >kosk >kok skok skok skok skok >k sk ok ke k >k ke >k sk >k

fval = 1.6239748394623575e-22 | total call = 24 | ncalls = 24
edm = 1.6240799333014984e-22 (Goal: 1e-05) | up = 1.0

Valid | Valid Param | Accurate Covar | Posdef Made Posdef
______ True | True| True | True | False |
| Hesse Fail | Has Cov | Above EDM | | Reach calllim |
| False | True | False | ''| False |

Sk KKk Sk Kk Sk K ok Sk Sk K ok Sk K Sk Sk Sk K 5k Sk Sk ok Sk Sk K Sk Sk Sk ok Sk Sk >k Sk Sk Sk ok Sk Sk ok ok Sk Sk ok Sk Sk >k Sk Sk >k ok Sk Sk >k Sk Sk >k k >k >k >k >k Sk >k >k >k >k >k
X : 8.000000000011832 +- 1.0000000000003002 ~ N
y : 6.000000000004732 +— 0.9999999999993588 iv/eebriztr '(tlv?)‘fes SELE0)

fa

13

A TYPICAL EXAMPLE

Suppose you are collecting a type of particle, the only obseryvable is
the mass. However there are several typical issues we have to
resolve before reporting the measurement:

Our particle detector has some finite resolution hence the
measured particle mass does not follow a delta function. The
mass of the particle is not yet known, and the resolution of your
detector is also unknown.

There are some random physics or detector noise with a
unknown rate. This will generate some fake background events
and mix with your signal.

Fortunately we can repeat such an experiment for many, many
times and enable us to describe the data statistically.

| 4

This is very similar to what we have

already introduced in the earlier

lecture (when we are talking about

the minimum finding!)

But now the data is a given event-
by-event, just like some random

distribution generation!

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0

2.4

2.6

2.8

3.0

3.2

225 250 275 3.00 325 350 375 4.00 425

50 A

40 A

225 250 275 3.00 325 350 3.75 4.00 4.25

500 -

400 A

200 4

100 A

//'

one of the events!

225 250 275 3.00 325 350 3.75 4.00 4.25

A TYPICAL EXAMPLE (HH

m The data file dimuon. npy can be
found on CIEBA and the lecture web 17504

page' 1500 A
m The following example code can be 1250
used to produce the distribution show 1o0-
at the right. o

500 A

import numpy as np 250
import matplotlib.pyplot as plt

0_

evt = np.load('dimuon.npy") .

225 250 275 3.00 325 350 375 4.00 4.25

fig = plt.figure(figsize=(6,6), dpi=80)
plt.hist(evt, bins=100, range=(2.2,4.2))
plt.show()

| " 1306-example-02.py
16
o P

A FAMOUS PARTICLE

m This “peak” you just saw is a famous one: the

“]” particle (now it is called “J/1”) found by
Prof. Samuel Ting and other colleagues. This
leads to his 1976 Nobel prize in Physics.

m It's a direct proof of the charm quark.

Surely today we have
uncountable number of
this particle, produced/

detected by the modern
experiments!

LETTERS 2 Drcemsrr 197-

80r N
242 Events—- —

-

70 + SPECTROMETER

r E At normal curreat

60 | [J=10% current

50 |

a0t 1 g
’
%

0} Z
Z
Z
A

20} 7

a ¢l - . »
&S 2.75 3.0 3.25 3.5
mg+e=[GeV]
2. Mass spectrum showing the existence of J.
s from two spectrometer settings are plotted
g that the peak is independent of spectrometer

ts., The run at reduced current was taken two
3 later than the normal run.

e ——

INFORMATION
EXTRACTION!?

m Now we have data events
summarized as a histogram, and
several questions can be asked:

What is the peak position?

How many signal and
background events we
observed?

What is the width of the bump?

[s there a second peak nearby?

By adopting a simple model to
data, we can extract some of

[\ these information from the fits!
— P

1750 A

1500 A

1250 A

1000 A

750 A

500 A

250 A

|

wn the peak?

second bump?

l

225 250 275 3.00 3.25 3.50 375 4.00 4.25

How many evev

How wide is i?

JUST MODEL [T?

m Let’s take the events near the peak

and describe it with a very simple
model of a Gaussian plus a linear
function. This is very close to the
model used in our earlier lecture.

You may ask how do we know if
such a model is sufficient to fit the
data events?

The answer is: we do not know!
But there are statistical methods
can help you to decide which
model describe your data better.
You can look for “f-test”.

1750 A

1500 A

1250 A

1000 A

750 A

500 A

250 A

GAUSSiIaw
signal?

225 250 275 3.00 3.5 3,50 375 4.00 4.25

\ineay bacV\()‘(ou\nA?

BINNED DAITA

m In order to perform a least-square/x? fit, first we have to convert

the series of data into “data points with uncertainties”.

m Given the particle production process is mostly like a Poisson, the
uncertainty can be just the variance of the distribution, ie. the
square-root of the event counts.

2.5840060
3.11929

H
2.91791 Count events
2 49244 v each bin
3.15518

Bin
2.60-2.61
2.61-2.62
2.62-2.63
2.63-2.64
2.64-2.65

20

Histogram

Take squave—

voot of the

evewt counts

as the

UV\CQ‘(‘(:@TV\‘(:\j.

BINNED DATA (II)

800 - +

In fact we have practice in a much +

600 -

earlier lecture. NumPy can convert the :

. . t
data events to binned histograms. i00- ;o
by
LA
Then we can calculate the errors by o) v e
. ¢ X
ourselves easily. ’ AP St

evt = np.load('dimuon.npy")

2.6 2.8 3.0 3.2 3.4 3.6

xmin, xmax, Xxbinwidth = 2.6, 3.6, 0.01
vy,edges = np.histogram(evt, bins=100, range=(xmin,xmax)) ¢ y axis, x-edges
vX = 0.5%(edges[1:]+edges[:-1]) < x axis
vyerr = vy*xx0.5 <& Poisson standard variance

fig = plt.figure(figsize=(6,6), dpi=80)
plt.plot([xmin,xmax], [0.,0.],c="black', lw=2)

plt.errorbar(vx, vy, yerr = vyerr, fmt = '.")
plt.grid()
plt.show() / 1306-example-02a.py (partial)

/‘\ | 2!
T y

LEAS T-SQUARE FIT WITH
MINUIT

[t is straightforward to perform a least-square fit with Minuit.
Basically we have to provide a fcn function to evaluate the x2 value

as we did before with SciPy.

vyerr def model(x, norm, mean, sigma, c@, cl):

vy linear = c@ + clx(x—=xmin)/(xmax—xmin)

model(vXx,..) _ R , ,
gaussian = normkxbinwidth/(2.xnp.pi)**0.5/sigma * \
np.exp(—0.5%((x—mean)/sigma)*xx*2)

VX return gaussian + linear
X° = def fcn(norm, mean, sigma, c@, cl):
model(va; . ..) — vy 2 expt = model(vx, norm, mean, sigma, c@, cl)
2{: delta = (vy-expt)/vyerr
vyerr return (deltalvy>0.]%%2).sum()

I306-example-03.py (partial)

22

LEAST-SQUARE FITWITH 47
MINUIT (11 <

m Calling the Minuit to do the minimization, and overlay the
resulting curves:

= Minuit(fcn, norm=6000., mean=3.09, sigma=0.04, c0=200., c1=0.)
.migrad() < Look for minimal
.minos () < Calculate the asymmetric errors

.print_param() < Print parameter summary

3 3 3 3

plt.plot([xmin,xmax], [0.,0.],c="black', lw=2)
plt.errorbar(vx, vy, yerr = vyerr, fmt = ‘.")
Curve plotting is roughly

np. linspace(xmin,xmax,500) < the same as before!

model(cx,m.values[‘norm'],m.values['mean'],
m.values['sigma'],m.values['c0'],m.values['c1l'])
cy_bkg = model(cx,0.,m.values[‘mean'],
m.values['sigma']l,m.values['c@'],m.values['cl'])
plt.plot(cx, cy, c="red', lw=2)
plt.plot(cx, cy_bkg, c=‘red', lw=2,1s="—")

z\-- > o d ¢ " 1306-example-03.py (partia) | 5
— P

CX
Cy

| EAST-SQUARE FIT WITH
MINUIT (Il

m We can obtain the best fitted values

with their associated uncertainties!
— We have observed 5984 + 96 events.

~ The mean peak position is
3.0920 + 0.6 GeV.

~ We will come back to the meaning
of these uncertainties in a moment.

800 A

600 -

400 -

200 ~

Name | Value Para Err Err— Err+
0 norm = 5984 96.34 -96.43 96.26
1 mean = 3.092 0.0005636 | -0.0005661 0.0005615
2 | sigma = 0.03282 0.0006026 | -0.0005941 0.0006114
3 co = 193.1 2.668 -2.671 2.666
4 cl = -110.8 4.007 -4.002 4.013
24

3.6

THE LIMITATION OF LEAST- 47
SQUARE METHOD S

m The results shown in the previous page look quite nice, but there /
are some obvious problems! Remember we always need to
produce a histogram before applying the chi-square fit to the data.

— The fitting definitely depends on your histogram setup.
Many bins — error of each bin could be large/ or null bins.
Fewer bins — loose of resolutions.

— Null bins are not defined: no uncertainty can be assigned.
(so it cannot work with very small number of events...)

L et's examine these two “ill”’ cases...

TRIAL #1: A MUCH WIDER
BIN WID TH?

m Let's re-do the fit with much wider bins:

xmin, xmax, Xxbinwidth = 2.6, 3.6, 0.05
vy,edges = np.histogram(evt, bins=20, range=(xmin,xmax))
/ 1306-example-03a.py (partial)
Name | Value Para Err Err— | Frr+ |
0 norm = 6151 100.2 -100.3 |
1 mean = 3.092 0.0006676 -0.000667
-~ 2 sigma = 0.03806 0.000643 -0.000641 ™
g 3 cO = 962.2 13.48 -13.48 o
<<:: 4 cl = -550.1 20.15 220.16 ..
S| 1500 -
AN
|\\~ © | norm = 5984 | o
| 1 | mean = 3.092 | 500
| 2 | sigma = 0.03282 | .

[\ Original fits ”
— 2

TRIAL #2: A MUCH SMALLER £

SAMPLE?

m Let's re-do the fit with only first 200 events?

evt

np.load('dimuon.npy') [:200]

/ 1306-example-03b.py (partial)

Name | Value Para Err Err
norm = 32.79 7.847 -7 .92
mean = 3.101 0.006163 -0.00

sigma = 0.02259 0.004775 -0.00

co = 1.691 0.3638 -0.36 =
cl = -0.5362 0.6183 -0.61

The background level is

totally overestimated: | o

27

2.6

LT WITH UNBINNED
MAXIMUM LIKELIHOOD

In the X2 fits, we have to produce histograms first, but for an
unbinned maximum likelihood fit, this is not necessary.

For each event we can have the following likelihood function:

L; = fs ' Ps(xi§ﬂag) -+ (1 — fs) ' Pb(aji;cl)

N
The best solution by maximizing the total likelihood: 7 — H 7.
Or, by minimizing the value of — 1

1

f=-2In(L) =2 log(L;)

Remember the factor of 2 is to match the definition of Gaussian errors!

P (Pp) : signal (background) PDF
[fs (1—f5) : signal (background) fraction

/\ u, o, ¢ : fitting parameters to be resolved by the estimator
28
S D

FIT WITH UNBINNED Y w2
MAXIMUM LIKELIHOOD (ll) A&

Now to prepare the explicit functions based on the simple
we just introduced earlier:

1

2TO

P, = G(z; 1, 0) = —

—(w—u)Q}

x|

The nwovrwmalization
1S very important!

P,=cy+ci-z=N[l+c; -z

Imax 1
/ Py(x)dr =1 — N =

min (max — min) + ¢; - (max2 — min?)/2

1 —\L; — 2]
Li:fsx\/%o_eXp (QJQM) + (1 =fs) X N(1+c-x)

= With the following floated fitting parameters: [, o, i, 1

Note: an overall normalization is removed!

!\ - only 4 free parameters!

UML FITTER EXAMPLE ,

® Let’s modify the code to perform the likelihood calculation:

evt
evt

Xxmin,
vy, ed
VX =
vyerr

def model(x, norm, mean, sigma, cl):

L

gaussian = 1./(2.%np.pi)**0.5/sigma * \

f

return fsxgaussian + (1.-fs)xlinear -Li::eﬂS'}§'+'Cl“fE

def fcn(norm, mean, sigma, cl):

L

np.load('dimuon.npy")

¢ . .
evt [abs (evt=3.1)<0.5] only keep the events between 2.6 and 3.6

Now the binned histogram
xmax, xXbinwidth = 2.6, 3.6, 0.01 < is only used for plotting!
ges = np.histogram(evt, bins=100, range=(xmin,xmax))
0.5%(edges[1:]+edges[:-1])
= Vy*x*x0.5

inear = (1. + c1xx)/((xmax=xmin) + clx(xmaxxx2—-xmin*x%*2)/2.)

np.exp(-0.5%((x—mean)/sigma)**2)

& [ilel o
s = norm/len(evt) likelihood function

= model(evt, norm, mean, sigma, cl)< likelihood value for each evenit

X

if np.any(L<=0.): return 1E100 < Protection for non-physical likelihoof value

return =2.%np.log(L).sum()

/ |306-example-04.py (partial) |

30

UML FITTER EXAMPLE (Il

® The Minuit call is the same as before, only small modification to

the plotting part.

= Minuit(fcn, norm=6000., mean=3.09, sigma=0.04, c1=0.)

.minos ()

m

m.migrad()

m
m.print_param()

fig = plt.figure(figsize=(6,6), dpi=80)

plt.plot([xmin,xmax], [0.,0.],c="black', lw=2)

plt.errorbar(vx, vy, yerr = vyerr, fmt = '.'

cx = np.linspace(xmin, xmax,500)

cy = model(cx,m.values[‘fs'],m.values['mean’
m.values['cl'])*xxbinwidthxlen

cy_bkg = model(cx,0.,m.values[‘mean'],m.values['sigma’'],

m.values['c1l'])*xxbinwidthx(len(evt)
plt.plot(cx, cy, c='red', lw=2)
plt.plot(cx, cy_bkg, c='red', lw=2,1s="'—")

The likelihood function

) have to times the # of
Jl events & bin width!

],m.values['sigma'],
evt)

-m.values['norm'])

/ |306-example-04.py (partial)

IS
in normalized to one, we

total

31

UML FITTER
EXAMPLE (1Il)

m Just execute the code!

n

|

\

800 A

600 A

400 A

200 A

Name | Value
norm = 6022
mean = 3.092

sigma = 0.03290

cl = -0.2299

88.38
0.0005803
0.0005753
0.002315

2.6 3.2

3.6

Err— | Err+ T
-88.25 88.53
-0.0005807 0.0005799
-0.0005703 0.0005805
-0.002253 0.002381

B

0 norm = 5984 96.34 -96.43 96.26
1 mean = 3.092 0.0005636 -0.0005661 0.0005615
2 sigma = 0.03282 0.0006026 -0.0005941 0.0006114
3 cO = 193.1 2.668 -2.671 2.666
4 cl = -110.8 4.007 -4.002 4.013

32

,.
REVISIT THE “PROBLEMS” — _#7
BINNING

m Now the fit does NOT depend on the binning anymore; the binned
histogram is just for making plots.

00000

00000

0- I g A
! 000 bins
i

33

REVISIT THE “PROBLEMS” — _4
NULL BINS

m Let's re-do the fit with only first 200 events again?

evt

np. load('dimuon.npy') [:200] ‘
evt

evt[abs(evt-3.1)<0.5]

/ 1306-example-04a.py (partial)

Name | Value Para Err Err—
4] norm = 48.21 7.292 -7.250
1 mean = 3.093 0.00678 -0.007@
2 sigma = 0.03484 0.006607 -0.0062 N
4 cl = -0.2370 0.02504 -0.0185

The background level is
correctly estimated now. @ .

2{6 2i8 3j0 312 314 316
34

N
I
1
|
I
-
£
—
—_—

COMMENT: MAXIMUM
LIKELIHOOD ESTIMATOR

The maximum likelihood estimator has “very good” statistical
properties: it’s consistent, efficient, and robust.

ML estimators may have some bias, but they should decreases as N
increases, if the selected PDF model is the correct one!

The efficiency of ML estimator is asymptotically 1, when the size
of observations approaches infinite: N—co. ie. the variance of the
ML estimator is very close to the ideal variance.

No other asymptotically unbiased estimator has asymptotic
mean-squared error smaller than the ML estimator.

Nevertheless the ML is the widest used parameter estimator.

The next question Is what are the

r .
errors reported by the Minurt!

35

GAUSSIAN APPROXIMAHON

iy |\ \.
/ / |\ & gl
'v |

4 |

If we have a set of N independent measurements, whose PDFs are
identical and are Gaussian, we have the model

1 X — u)?
f(Xip, o) = oy P [—(QUQM)]
The likelihood function is
(X, — p)°
—2InL = Z 102 + N(In27 4+ 21Ino) (just the x2!)
1=1

The maximum likelihood estimate can be performed by an
analytical minimization on u (assuming o is known):

N
1
est _ . .
H = E_l X; (Basically the sampling mean)

If 02 is also unknown, the ML estimate of 02 is:

1 N

(0°5%)? = N Z(X’L — u®%? (mean-squares)
i=1

36

ERROR ESTIMATION —

m There are two approaches to determinate parameter
uncertainties.

B Local error — the 2nd order partial derivatives with
respect to the fit parameters around the minimum:

2
C = 0" In I MIGRAD/HESSE
’ (3’(9@-5’6’9- command under
- Under Gaussian approximation it equals to the minuit

covariance matrix;

- May lead to underestimated errors with finite

samples.
B Evaluation of -2InL values around the maximum MINOS
point of likelihood function. RRaoenC e s
— Leads to usual error matrix in a Gaussian model minuit

f - May lead to asymmetric errors.
™y

37

ERROR ON MEAN!

m Let’s practice the calculation with second derivatives!

m Remember the likelihood function with the assumption of
Gaussian models:

—2InL = Z N(n2r + 2Ino)

® The error on the mean g can be estimated by

fa_ 1 _ WL _N
T 52 e 52

® And it just gives us the usual estimation of “error on mean”:

Z\ 38
D

can be approximated by parameter excursion ranges.

®m A “n-o0” error can be determined by the range around the
Likelihood maximum for which the —2InL value increases by n*:

~ The errors can be asymmetric for the positive and negative side!
- Itisidentical to the o of Gaussian PDF.

—-2InL

_21anaX +].

'

A

_21anaX

P

Basically this is what
minuit does when
you call the MINOS

command.

SCAN OVER LIKELIHOOD
FUNCTION

® The iminuit package has provide
a simple tool to produce a scan

over the FCN function you
provided. e.g.

®m Minos reported value is
norm = 48.21 +7.313/-7.250,

which is consistent with the
result from a direct profile

likelihood scan.

fig = plt.figure(figsize=(6,6), dpi=80)
m.draw_mnprofile('norm', bins=1000, subtract_min=True)

plt.show()
" 1306-example-04b.py (partial)
. 40

BREAKDOWN OF
STANDARD UML FIT

® The unbinned maximum likelihood fit can do the job very well,
except for the case of very few (clean) events.

® The uncertainty may be underestimated if the background is too
small (e.g. one can think of it as fs — 1, than error — 0).

m Generally there is always a Poisson error associated with the total
observed events, and it should not be ignored.

m This requires a modification to the likelihood function.

Let's examine following

example for such a case again.

A MUCH CLEANER SAIVIPLE

® Just use another example data set with S/N ~ 2: clean_data.npy’

B

evt = np.load('clean_data.npy')

" 1306-example-04c.py (partial)

| | Name | Value | Para Err
0 norm = 5998 52.61
1 mean = 3.092 0.0004748
2 sigma = 0.03277 0.0003942
3 cl = 0.007229 0.06743

-0.000 =

-0.056

600 A

—~ Look at the error of “norm”, it's
actually too small ~0.9%. The

uncertainty cannot be smaller then the

Poisson error (square-root of the

“norm”, which is ~1.3%).
)

400 A

much \owey
backnguMA!

2.6 2.8 3.0 3.2 3.4 3.6

THE EXTENDED MAXIMUM 47
LIKELIHOOD ESTIMATOR &

The likelihood function for each event should be modified tb
L; =ng - Ps(aji; L U) + Ny - Pb(mﬁ Cl)

The best solution by maximizing the total likelihooa:

Total obsevved exp|—(ns + np))] a
event N is fixed: L = N! H Li

Or b i th | ¢ A constant, can be
r by minimizing the value o thrown away.

f=—2I(L) = 2(n, +np) =2 log(Ls) — logkNT).

P (Pp) : signal (background) PDF
ns (np) : signal (background) yields
u, o, ¢ : fitting parameters to be resolved by the estimator

S .

EXTENDED UML FHH TER

np.load('dimuon.npy")
evt[abs(evt-3.1)<0.5]

evt
evt

xmin, xmax, xbinwidth = 2.6, 3.6, 0.01

vx = 0.5%(edges[1:]+edges[:-1])
vyerr = vyxx0.5

def model(x, ns, nb, mean, sigma, cl):

gaussian = 1./(2.%np.pi)**0.5/sigma * \
np.exp(-0.5%((x—mean)/sigma)*xx2)

def fcn(ns, nb, mean, sigma, cl1): s

L = model(evt, ns, nb, mean, sigma, c1)
if np.any(L<=0.): return 1E100

| return 2.*(ns+nb)-2.*np.log(L).sum()

Z\ : i
—y y

vy,edges = np.histogram(evt, bins=100, range=(xmin,xmax))

linear = (1. + c1%x)/((xmax=xmin) + c1lx(xmaxx*x*kx2-xminxx2)/2.)

The M?da‘bed L"’
return nsxgaussian + nbxlinear «— wnote the yields

Svont of the PDF

~] = 2(”3 ‘|‘nb) _2210(

/ I306-examp|e-05.py (partial)

EXTENDED UML FITTER (1)~ 7.

y

® Also need to modify the minuit call and plotting code a little bit.

m = Minuit(fcn, ns=6000., nb=14000., mean=3.09, sigma=0.04, c1=0.)
Wo ke rad() I initial ns and nb

m.minos ()
m

.print_param()
fig = plt.figure(figsize=(6,6), dpi=80)
plt.plot([xmin,xmax], [0.,0.],c="black', lw=2)

plt.errorbar(vx, vy, yerr = vyerr, fmt = '.") The likelihood function is
cx = np.linspace(xmin, xmax,500) Jl in normalized to Ns+Nb how!
cy = model(cx,m.values[’'ns'],m.values['nb'],m.values['mean'],

m.values['sigma'l,m.values['cl'])xxbinwidth
cy_bkg = model(cx,0.,m.values[‘nb'],m.values['mean'],
m.values['sigma'],m.values['cl'])*xbinwidth
plt.plot(cx, cy, c="red', lw=2)
plt.plot(cx, cy_bkg, c='red', lw=2,1s="'—")

plt.grid()
| plt.show()

" 1306-example-05.py (partial)
l\ , 45
—y y

P : '/.\\
EXTENDED UML *ﬂ
Remark: you may find the [l
’ . . ° ° ° ’
m Let'sjust try it (e WGICERET little bit! .. i %
Name | Value Para Err Err- L —

0 ns = 6022 +-98.04 -97.89 98.4
1 nb = 1.39E+04|i 132.2 -132 132.7
2 mean = 3.092 . 0.0005802 | -0.0005801 | 0.0005806
3 | sigma = 0.03290 | 0.0005746 | -0.0005702 0.0005806
4 cl = -0.2299 | 0.002315 | -0.002252 0.002382
m The results are (almost) theé same as the standard UML fit:
0 | norm = 6022 .-88.38 -88.25 88.53
1 | mean = 3.092 0.0005803 | -0.0005807 0.0005799
2 | sigma = 0.03290 0.0005753 | -0.0005703 0.0005805
3 cl = -0.2299 0.002315 | -0.002253 0.002381
__ 46

EXTENDED UML
FITTER (IV)

m Try the clean sample again:

evt = np.load('clean_data.npy')

" 1306-example-05a.py (partial)

Name | Value Para Err Err— Err+
0 ns = 5998 82.24 -82.25 82.26
1 nb = 3003 61.39 -52.82 52.41
2 mean = 3.092 0.0004748 | -0.00047""_"°~ -~ ~~~"""-
3 | sigma = 0.03277 0.0003941 | -0.0003! sco- :
4 cl = 0.007462 0.06743 -0.0565! A

600

|
— Since this extended ML fit includes

the Poisson error to the total # of
events, the uncertainties can be
correctly estimated (>square root of 1 /

[\ the event counts!). - I e
— P

400 1

Although we have commenting that the reported errors of the
yields cannot be smaller than the Poisson variance, since such a
particle detecting is a Poisson process, but we have not yet fully
prove the errors given by Minuit does match to the standard
“one-sigma” error.

Here we just want to introduce a typical method to verify this. This
is what we usually call the pseudo experiments.

This means, we can generate many sets of “pseudo (toy) data”
using the random numbers, while these data should follow exactly
the expected statistical distributions. Then we use our estimator to
fit these toy data sets and obtain their associated estimates and
uncertainties.

48

HOW DO YOU KNOW THE 27
FRRORS ARE CORRECT? (Il) A

If our tool is reporting the correct mean and errors, the resulting
estimate from each fit should agree with the input values up to the
fluctuations allowed by the reported errors.

One of the typical way to verify this is to calculate the “pulls”,

which are defined by it)
(i M) Indices i means ith

P, =
’ o oSt set of pseudo data

[f everything is correctly implemented (including both the pseudo
data generation & estimator), the pull P should just distribute like
a standard normal distribution with mean zero and width one.

Let’s practice this method with our extended ML estimator!

49

GENERATING & FIT TING-——

m Here we introduce a very simple test model and perform tt e stu v
just mentioned in the previous slides. /

B For each pseudo experiment:

Repeating the generation and fits, see
if the resulting distribution agrees
with a standard Gaussian or not!

PSEUDO EXPERIMEN T

Here are a simple example code to perform a pseudo experment:
generating events and perform a fit afterwards.

The interface with Minuit is the same as the previous example.

S = np.random.randn(200)*0.03290+3.092
B = np.random.rand(400)+2.6
evt = np.hstack([S,B])
np.random.shuffle(evt)

< generation of “toy” events

xmin, xmax, xbinwidth = 2.6, 3.6, 0.01

vy,edges = np.histogram(evt, bins=100, range=(xmin,xmax))
vx = 0.5%x(edges[1:]+edges[:-1])

vyerr = vyxx0.5

def model(x, ns, nb, mean, sigma, cl):

def fcn(ns, nb, mean, sigma, cl):

| " 1306-example-06.py (partial)
/L\\ ‘ >!

Name | Value Para Err Err— Err+
0 ns = 196.9 16.88 -16.47 17.33
1 nb = 403.1 22.17 -21.87 22.47
2 mean = 3.09 0.003184 -0.003183 0.003197
3 | sigma = 0.03431 0.002655 -0.002518 ' a amnoic |
4 cl = 0.2828 0.599 -0.599 >

25 A
20
154

Here are the result of ONE pseudo

experiment, now the next to verify the

fluctuation of # of signal and its error. . ’ m
L ARSI

2.6 2.8 3.0 3.2 3.4 3.6

52 F— ——

(o]

O_

PSEUDO EXPERIMENT

60 1

() m We need to repeat generation + fit for
many iteration, and verify the resulting
distribution.

S

O_

20 A

np.zeros(1000)
np.zeros(1000) :

values
errors

for idx in range(len(values)):
S = np.random.randn(np.random.poisson(200.))*0.033+3.092
B = np.random.rand(np.random.poisson(400.))+2.6
evt = np.hstack([S,B]) < generation

m = Minuit(fcn, ns=200., nb=400.,
mean=3.092, sigma=0.033, c1=0.)
m.migrad() & fir

m.values['ns'] Jl' Nearly a standard Gaussian!

values [idx]

errors [idx] m.errors|['ns']

Pull mean: -0.00900125913
pull = ((values-200.)/errors)[errors!=0.1 |p 11 width: 1.03899390174

print('Pull mean:',pull.mean())
print('Pull width:',pull.std())
[\\)

/ 1306-example-06a.py (partial) 53

FINAL COMMENT

The (extended) unbinned maximum likelihood method is the best
estimator for most of the parameter extraction problems.

[t should provide a proper estimate of the parameters and well as
the associated statistical uncertainties, as far as your model is
correct!

Although we have present this with a typical analysis of “bump-
like” data and use it to extract the hidden parameter of the peak,
but the method can be adopted to many other different
applications.

There are still many related topics can be discussed (e.g.
confidence level estimation, upper/lower limit, hypothesis tests),
but we will stop here and keep them for your own future study.

54

HANDS-ON SESSION

W Practice 01:
Maybe you “feel” the model to the J/{ mass peak is not good
enough? There might be some tails near the peak and it cannot be
described by a single Gaussian.

m Please extend the model by adding the second Gaussian to the signal
peak and see if you can get the resulting plot as below?

400 - \ { 400
200 g / 200 1
) §
¢ ¢ il) ¢ T m———
(X 4 eV |
0 0
A 2.6 2.8 3.0 3.2 3.4 3.6 2.6 2.8 3.0 3.2 3.4 3.6
A\\)

HANDS-ON SESSION

m Practice 02:

Go back to the original mass plot
with a wider range. I have claimed
there is in fact a second peak of the
“P(2S)” particle at 3.69 GeV. It is an
excited state of the big J/{ peak.

Try to perform a fit to it instead ot
the big peak!

56

1750

1500

1250

1000

750 A

500 A

250 A

second bump
heyel

l

225 250 275 3.00 3.25 3.50 375 4.00 4.25

R

