
INTRODUCTION TO 
NUMERICAL ANALYSIS
Lecture 1-3:  
Functions and modules

1

Kai-Feng Chen
National Taiwan University

2020



FUNCTIONS & MODULES

■ Your life could be easier if you can build a house 
with lego blocks rather than sands and stones. 

2



FUNCTIONS

■ In the context of programming: a function is a named sequence of 
statements that performs a computation. 

■ An example of a function call:  
 
 

■ The name of the function is type. The expression in  
parentheses “(True)” is the argument.

■ A function “takes” an argument and “returns” a result, which is 
called the return value.

3

>>> type(True)
<class 'bool'>



WHY FUNCTIONS?

■ It is worth to divide a program into several functions:

▫ It makes your program easier to read.

▫ It makes a program shorter by eliminating repetitive code. 

▫ Dividing a long program into functions allows you to examine 
the parts one at a time, easier to debug.

▫ Well-designed functions can be useful for many programs. Can 
be reused again and again.

■ In python, a module is a file that contains a collection of related 
functions. It can be reused many many times.

4



MATH FUNCTIONS

■ Python has a math module that provides most of the familiar 
mathematical functions.

■ In order to use the math functions, the first step is to import the 
math module as:  
 
 
The functions can be accessed by the “dot notation”:

5

>>> import math

>>> math.log(10)
2.302585092994046
>>> math.log10(10)
1.0

  ⇐ this is ln()



MATH FUNCTIONS (II)

■ Now you are able to calculate something much more complicated 
than before – e.g.  
 
 
 
 
 
 
 
 
For more math functions, please see:  
http://docs.python.org/3/library/math.html

6

F (x, y) =
sin2

�
x� ⇡

2

�
+ cos2

�
y + ⇡

2

�
+ e2(x+y)

(x2 + 6)(y � 2)3

>>> import math
>>> F = math.sin(x - math.pi/2.)**2 + 
math.cos(y + math.pi/2)**2 + 
math.exp((x+y)*2)/((x**2+6)*(y-2)**3)

http://docs.python.org/3/library/math.html


THE STANDARD LIBRARY

■ Standard libraries include many tools or functions for commonly 
used algorithms, data structures, and mechanisms for input and 
output. The math module is just one of them. 

■ Python has embraced a much more inclusive vision of the standard 
library (unlike the C/C++) –– a "batteries included" philosophy. 

■ This is one of the special feature of python: a lot of ready-to-use 
tools can be included in your own coding work. If you need a 
quick manual, you can simply type the built-in “help” function in 
the python interpreter:

7

>>> import os
>>> help(os)
....

  ⇐ will show a help page for the “os” module.



THE STANDARD LIBRARY

8

Help on module os: 

NAME 
    os - OS routines for NT or Posix depending on what system we're on. 

MODULE REFERENCE 
    https://docs.python.org/3.6/library/os 
     
    The following documentation is automatically generated from the Python 
    source files.  It may be incomplete, incorrect or include features that 
    are considered implementation detail and may vary between Python 
    implementations.  When in doubt, consult the module reference at the 
    location listed above. 

DESCRIPTION 
    This exports: 
      - all functions from posix or nt, e.g. unlink, stat, etc. 
      - os.path is either posixpath or ntpath 
      - os.name is either 'posix' or 'nt' 
      - os.curdir is a string representing the current directory (always '.') 
      - os.pardir is a string representing the parent directory (always '..') 
      - os.sep is the (or a most common) pathname separator ('/' or '\\') 
      - os.extsep is the extension separator (always '.')

■ help(os) may show this to you!



A BRIEF TOUR

■ The os module provides dozens of functions for interacting with 
the operating system:

9

>>> import os
>>> os.getcwd()      
'/Users/kfjack'
>>> os.chdir('/usr/lib')
>>> os.system('ls *.a')
libcpp_kext.a libkmodc++.a libprofile_rt.a
libecpg.a libl.a libtclstub8.5.a
libecpg_compat.a liblber.a libtkstub8.5.a
libfl.a libodbc.a libwrap.a
libiodbc.a libpgport.a liby.a
libiodbcinst.a libpgtypes.a libkmod.a
libpq.a
0

  ⇐ get the current directory

  ⇐ change to a different path
  ⇐ run a generic system command



A BRIEF TOUR (II)

■ Common utility scripts often need to process command line 
arguments. These arguments are stored in the sys module’s argv 
attribute as a list. For example:  
 
 
 
 
 
 
 
 
 
Also the most direct way to terminate a code is to use sys.exit().

10

import sys
for arg in sys.argv:
    print('hello',arg) helloarg.py

% python helloarg.py world word wood
hello helloarg.py
hello world
hello word
hello wood
%



A BRIEF TOUR (III)
■ The random module provides tools for making random selections 

and generate random numbers:  
 
 
 
 
 
 
 
 
 
 
We will discuss the story behind random numbers in one of later 
lectures.

11

>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'banana'
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.random()    
0.42388613895489224
>>> random.gauss(0.,1.)
-0.7695903985126854
>>> random.randrange(1000)
267

  ⇐ get a random float point number (uniform dist.)

  ⇐ get a random number (Gaussian dist.)



A BRIEF TOUR (IV)

■ The datetime module supplies classes for manipulating dates and 
times. Date and time arithmetic is supported.

12

>>> import datetime 
>>> datetime.date.today()
datetime.date(2018, 2, 1)
>>> datetime.date.today().year
2018
>>> datetime.date.today().month
2
>>> first_day_of_ad = datetime.date(1,1,1)
>>> age = datetime.date.today() - first_day_of_ad
>>> age.days
736725



A BRIEF TOUR (V)

■ Something cool –– internet access with urllib:

13

>>> import urllib.request 
>>> response = urllib.request.urlopen('http://
www.phys.ntu.edu.tw/')
>>> html = response.read()
>>> print(html.decode('utf-8'))

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">  
<html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="zh-tw">  

<head><meta http-equiv="Content-Type" content="text/html; 
charset=utf-8" /><title> 
 國立臺灣⼤大學物理理學系 
</title><link href="App_Themes/Theme1/Site1.css" rel="stylesheet" 
type="text/css" /><link href="App_Themes/Theme1/jmenu.css"



COMMENTS

■ Actually there are still lots of built-in standard libraries which can 
be very useful for your working purpose. 

■ Other python packages are also very useful (you will see them in 
some later lectures).

■ Please check the official python tutorial (see the section 10 & 11):  
http://docs.python.org/3/tutorial/index.html

■ If have no idea which package to use –– simply google your 
needs. It is very easy to find a useful solution in most of cases.

14

http://docs.python.org/3/tutorial/index.html


INTERMISSION

■ Are you able to test Euler’s formula with python math module?

■ How many seconds have been passed between now and the 
beginning of year 2000? Trick:  
 
 
 

15

ei✓ = cos ✓ + i sin ✓

>>> import datetime 
>>> datetime.datetime.now()
datetime.datetime(2018, 2, 2, 0, 3, 15, 641451)



DEFINE YOUR OWN 
FUNCTION
■ The keyword def introduces a function definition. 

■ Followed by the function name and the list of arguments.  
⇒ The rules for function names are the same as for variable.

■ The body of the function must be indented, similar to the if/while/
for statements.

■ The first statement of the function body can optionally be a string  
⇒ documentation string, or docstring. 

■ It’s good practice/habit to include docstrings in code, which is 
very useful for preparing the reference documents.

16



AN EXAMPLE FUNCTION

■ This is a simple function that prints Fibonacci series.

■ You can type it directly in your python interpreter:

17

>>> def fib(n):    
...     """Print a Fibonacci series up to n."""
...     a, b = 0, 1
...     while a < n:
...         print(a, end=' ')
...         a, b = b, a+b
...
>>>

  ⇐ To end the function, you have to enter an empty line  
(this is not necessary in a script).

  ⇐ n is the argument of the function



DEFINITIONS AND USES

■ Now you get a “function” object:  
 
 
 
 

■ To execute a function:

18

>>> print fib
<function fib at 0x1005d3b90>
>>> type(fib)
<class 'function'> 

>>> fib(1000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987



DEFINITIONS AND USES (II)
■ Pulling together the code fragments from the previous slides, the 

whole program can be written as:

19

def fib(n):    
    """Print a Fibonacci series up to n."""
    a, b = 0, 1
    while a < n:
        print(a, end=' ')
        a, b = b, a+b
        
print('Print a Fibonacci series up to 1000:') 
fib(1000)

printfib.py

% python printfib.py
Print a Fibonacci series up to 1000:
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

start  
here  
    ⇒

  ⇐ call the function, jump to ✸ and back

  ⇐ ✸



DEFINITIONS AND USES (III)
■ The printfib.py code can be included as a module actually 

(suppose you put the printfib.py in your working directory):  
 
 
 
 
 
 
 
 
 
One can also put the .py file in module searching path, which can 
be set by the PYTHONPATH environment. 

20

>>> import printfib
Print a Fibonacci series up to 1000:
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>>
>>> printfib.fib(10000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 
1597 2584 4181 6765
>>>



ARGUMENTS

■ The arguments are assigned to variables called parameters  
[the “n” value in the previous fib(n) function]. 

■ Here are another example:

21

>>> def print_twice(bruce):    
...         print(bruce)
...         print(bruce)
...
>>> print_twice('spam')
spam
spam
>>> print_twice(17)
17
17

  ⇐ This function assigns the argument  
to a parameter named bruce.



ARGUMENTS (II)

■ Basically this function works with any value that can be printed.

22

>>> print_twice(math.pi)
3.141592653589793
3.141592653589793
>>> print_twice('Spam '*4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0
>>> michael = 'Eric, the half a bee.'
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

The operation has been carried out 
before entering the function.

  ⇐ The variable name dose not interfere the 
internal variable name (=bruce). 



SCOPE OF VARIABLES

■ When you create a variable inside a function, it is local, which 
means that it only exists inside the function. 

23

def print_twice(bruce):    
    print(bruce)
    print(bruce)
    
def cat_twice(part1,part2):    
    cat = part1 + part2
    print_twice(cat)

The variable bruce is local (exists) inside function print_twice;
part1, part2, and cat are local to function cat_twice.



SCOPE OF VARIABLES (II)

24

def print_twice(bruce):    
    print(bruce)
    print(bruce)
    
def cat_twice(part1,part2):    
    cat = part1 + part2
    print_twice(cat)
    
line1 = 'Bing tiddle '
line2 = 'tiddle bang.'
cat_twice(line1, line2)

<module>
line1 = 'Bing tiddle '
line2 = 'tiddle bang.'

cat_twice()
part1 = 'Bing tiddle '
part2 = 'tiddle bang.'

cat = 'Bing tiddle tiddle bang.'

print_twice()
bruce = 'Bing tiddle tiddle bang.'

print_twice is called by cat_twice, and cat_twice was called by 
__main__, which is the the topmost frame. When you create a 
variable outside of any function, it belongs to __main__.



SCOPE OF VARIABLES (III)

■ If you access to the variable which is not in the right scope, for 
example, accessing “cat” inside “print_twice”: 

25

def print_twice(bruce):    
    print(bruce)
    print(bruce)
    print(cat)

Traceback (most recent call last):
  File "test.py", line 12, in <module>
    cat_twice(line1, line2)
  File "test.py", line 8, in cat_twice
    print_twice(cat)
  File "test.py", line 4, in print_twice
    print cat
NameError: global name 'cat' is not defined



PYTHON SCOPE

■ A namespace is a mapping from names to objects.

■ When a name is used in a program, Python creates, changes or 
looks up the name in a namespace.

■ A scope is a textual region of a Python program where a 
namespace is directly accessible.

■ Names in Python spring into existence when they are first 
assigned values, and they must be assigned before used.

■ Python uses the location of the assignment of a name to bind it to a 
particular namespace. 

26



GLOBAL VARIABLES

■ Variables defined outside of functions are belonging to __main__, 
or the global variables. One can access to the global variables 
within functions.

■ However without the global declaration one cannot overwrite/
modify the global variable.

27

var = 1234
 

def set_value():
    var = 5678
 

def show_value():
    print('var =',var)
 

set_value()
show_value()

% python globalvar.py
var = 1234

globalvar.py

  ⇐ this is actually a local variable

  ⇐ print the global var



GLOBAL VARIABLES (CONT.)

■ One have to add the global declaration in order to obtain the full 
access to the global variable in the functions.

28

var = 1234 
  
def set_value(): 
    global var 
    var = 5678 
  

def show_value(): 
    print('var =',var) 
  
set_value() 
show_value()

% python globalvar.py
var = 5678

globalvar.py

  ⇐ now this var is a global variable

  ⇐ print the global var



INTERMISSION

29

 def layer1(var):   
    
     def layer2(var):   
         var += 1
         print('layer2 (#1) =',var)
        
     var += 1
     print('layer1 (#1) =',var)
     layer2(var)
     print('layer1 (#2) =',var)    
    
 var = 1    
 print('global (#1) =',var)    
 layer1(var)    
 print('global (#2) =',var)     

Try to run this code and 
see what are the values 
printed on the screen?



RETURN STATEMENT

■ Some of the functions (e.g. math.sin() function), such as the math 
functions, have results. This is carried out by the return statement: 

30

def factorial(n):
    """Calculate factorial of n (=n!)."""
    a = 1
    while n>1:
        a *= n
        n-=1
    return a    

>>> factorial(3)
6
>>> factorial(10)
3628800



RETURN STATEMENT (II)

■ Surely multiple return statement is allowed. This can be written in 
each branch with the if statement:  
 
 
 
 
 
 
 
 

■ The function terminates without executing any subsequent 
statements when it hits the return statement.

31

def calculate_area(x,y):
    if x<0:
        print('error: x is negative!')
        return 0
    if y<0:
        print('error: y is negative!')
        return 0

    return x*y



RETURN STATEMENT (III)

■ When a function ends without hitting the return statement, or the 
function writes nothing after the return statement, it actually 
returns a special value called “None”. 

■ This type of function is called void function.

32

>>> result = print_twice('I am a void function.')
I am a void function
I am a void function
>>> print(result)
None
>>> type(result)
<class 'NoneType'>



MORE ON THE ARGUMENTS
■ Specifying a default value for the arguments is actually allowed.

■ Such function can be called with fewer arguments. e.g.:

33

def check_pin_code(pinref, retries=3):
    while True:
        pin = input('Please enter a pin code: ')
        if pin==pinref:
            return True
        else:
            print('Wrong pin code!')

        retries = retries - 1
        if retries < 0:
            print('Too many failures!')
            return False

check = check_pin_code('abcd')



MORE ON THE ARGUMENTS 
(II)
■ Functions can also be called using keyword arguments of the form 

argument=value. For instance, one can call the function on the 
previous slide as:

34

check = check_pin_code('abcd',5)

check = check_pin_code('abcd',retries=5)

check = check_pin_code(pinref='abcd',retries=5)

check = check_pin_code(retries=5,pinref='abcd')

Two positional arguments ⬆

1 positional argument + 1 keyword argument ⬆

2 keyword arguments ⬆

2 keyword arguments (reversed order) ⬆



A MAIN FUNCTION?

■ By default python does not require a main function to start your 
program. But if you want to have a main function for various 
reasons (e.g. to avoid immediate execution after import, to avoid 
unwanted confusion of global variables, etc.), it is doable. 

■ Here are an example:

35

def main():
    print('Hello Main!')
  

if __name__ == '__main__':
    main() hellomain.py

% python hellomain.py
Hello Main!

__name__ is a special variable contain  
 ⇐ the current name of module. 



RECURSION
■ It is legal for one function to call another;  

it is also legal for a function to call itself. This is called recursion.

■ For example:

36

def countdown(n):
    if n <= 0:
        print('Blastoff!')
    else:
        print(n)
        countdown(n-1)

>>> countdown(3)
3
2
1
Blastoff!



RECURSION (II)

37

>>> countdown(3)

def countdown(3):
... ...
        countdown(2)

def countdown(2):
... ...
        countdown(1)

def countdown(1):
... ...
        countdown(0)

def countdown(0):
... ...
    print('Blastoff!')

This is the base case and 
no more recursive call.

If a recursion never reaches a 
base case, the program will 

never terminate. This is known 
as infinite recursion, and it is 

generally not a good idea.



RECURSION (III)

■ One can actually re-write the Fibonacci function with recursion:  
 
 
 
 
 
 
 
 
 
Maybe this is slightly cooler than the original one. 

38

def fib2(n, a=0, b=1):    
    if a < n:
        print(a, end=' ')
        fib2(n, b, a+b)
        
print('Print a Fibonacci series up to 1000:') 
fib2(1000)



INTERMISSION

■ What will be the value of the variable alpha?  
 
 
 
 
 
 

■ Let’s try an infinite recursion, see if this is really run forever?  
 

39

def absolute(x):
    if x>0:
        return +x
    if x<0:
        return -x
        
alpha = absolute(0)

>>> def call_me():
...     call_me()
... 
>>> call_me()



HANDS-ON SESSION

■ Practice 1 (a):  
Using the random module and print 10 random numbers between 
0 and 1 on your screen. 

■ Practice 1 (b):  
Generate more random numbers (e.g. 1000 numbers) and count 
how many random numbers are actually fall into the following 
intervals [0,0.25], [0.25,0.5], [0.5,0.75], and [0.75,1]. Are they all very 
close to 250 counts?

40



HANDS-ON SESSION

■ Practice 2:  
Rewrite the following Fibonacci function. Instead of printing the 
series up to n, print the series up to n-th term.

■ What’s the 1001th term in the series? How long (how many digits) 
is this number?

41

def fib(n):    
    """Print a Fibonacci series up to n."""
    a, b = 0, 1
    while a < n:
        print (a, end=' ')
        a, b = b, a+b



HANDS-ON SESSION

■ Practice 3:  
The sine function can be expanded (approximately) as a series:  
 
 
 
Write two functions sin4(x) and sin10(x), which is basically equal 
to the sum of first 4 and 10 terms in the series. Calculate the 
difference between the homemade sine functions with the 
standard one from the math module, for the following values of x:  

x = !/8, !/4, !/2 

42

sinx = x� x3

3!
+

x5

5!
� x7

7!
+ · · ·


