TXDIAD
INTRODUCTION TO /\

NUMERICAL ANALYSIS

L o ™

Lecture 2-2:

Numerical Differential & Integration

Kal-Feng Chen

National Taiwan University ;»

ANALY TICAL VERSUS
NUMERICAL

A GENERAL RULE:

B If you know the exact form, it's always better to do the calculus
analytically unless it's not really doable.

m Although we could do the calculation numerically without a
problem, but the precision is always a big issue.

® In this lecture, we will discuss the derivatives & integration for a
black box function f(x).

ANALY TICAL VERSUS
NUMERICAL

IF THE EXACT FORM IS KNOWN...

® Mathematica could be you good friend...
https:/ /www.wolframalpha.com/calculators /derivative-calculator/

& WolframAlpha e

derivative x*sin(x)*cos(x) =
fsa Extended Keyboard £ Upload i3t Examples >¢ Random
Derivative: | [Step-by-step solution |

d

. _ 2 _ 2 . ' .
'—(X SIN(X) COS(X)) = =XSIN (X)+ X COS (X)+SINn(X) Ccos(x)
ax

Plots:

https://www.wolframalpha.com/calculators/derivative-calculator/

ANALY TICAL VERSUS
NUMERICAL

ON THE OTHER HAND:

B Even if you can do your derivatives or integrations analytically, it
is still very useful to do the same thing in a numerical way as a
very good cross check (ie. debug).

® Suppose, you have >50 different functions to be implement in your
code, and you are calculating their derivatives analytically, even
you have already calculated everything by yourself, but it does
not guarantee you have no typo in your code!

Numerical calculus will give you a

quick and easy check first!

NUMERICAL DERIVATIVES

Suppose, you have a function f(x), and now you want to compute
f’(x), it's pretty easy, right?

fle+h)— f(z)
h

In principle we could insert a small h, maybe as small as possible

under the conversion of the numerical calculations. But THIS IS
NOT TRUE for numerical derivatives.

So, let's try such a simple function that we could actually do the
exact calculations easily:

f(x) = 2% 4 exp(x) + log(x) + sin(z) 1
- f(x) =2z + exp(x) + —+ cos(x)

By definition, forh— o0 f'(x) ~

5

LET'S GIVE IT A QUICKTRY- 4

import math

def f(x):

return x*k2+math.exp(x)+math.log(x)+math.sin(x)
def fp(x):

return 2.xx+math.exp(x)+1./x+math.cos(x)

X, h =0.5, 1E-2 < Starting from h = |E-2
fp_exact = fp(x)

while h>1E-15:

fp_numeric = (f(x+h) - f(x))/h

print('h = %e' % h)

print('Exact = %.16f,"' % fp_exact, end=" ")
print('Numeric = %.16f,"' % fp_numeric, end=' ')

print('diff = %.16f' % abs(fp_numeric-fp_exact))

h /= 10. & retry with smaller h!
| 1202-example-01.py

[\\] 6
—y >

A QUICK TRY....

Output:

= pi = i = p = = N = B~ - 2~ - 2 - B - A -

le-02,
le-03,
le-04,
le-05,
le-06,
le-07,
le-08,
le-09,
le-10,
le-11,
le-12,
le-13,
le-14,

Exact = 5.5263038325905010

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

5.5224259820642496,
5.5258912717413011,
5.5262623253238274,
5.5262996793148380,
5.5263034173247396,
5.5263037901376313,
5.5263038811759193,
5.5263038589714579,
5.5263038589714579,
5.5263127407556549,
5.5262461273741783,
5.5311311086825290,
5.5511151231257818,

diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff

0.0038778505262513
0.0004125608491998
0.0000415072666735
0.0000041532756629
0.0000004152657613
0.0000000424528697
0.0000000485854184
0.0000000263809570
0.0000000263809570
0.0000089081651540
0.0000577052163226
0.0048272760920280
0.0248112905352809

® For a small h, let’s perform the Taylor expansions:

h? h?
f(z+h) = fx) + hf'(2) + o (@) + =7 () + ...

Thisiswhatwe" f(CI}—I—h)—f(CU) %f/(l‘)—i—ﬁf”(a?)—l—h—me(:E)—l—
;

are calculating: h 2

In principle, we have an approximation error of O(h),
for such calculations. But there is another round-off error,
close related to the machine precisions:

h? h3
f(x+h) =~ f(x)+hf(x)+ 7]”’(:13) + Ef”’(m) + ... Hep,

l\“ 8

fa

THE PROBLEM!?

m So, if we account for the numerical derivatives:

h h?

umerical(x) = ~ f/(CI}) + {—f”(a}) + Efm(ilj) + ...

The total error ~ O(h) + O (%m’)

For a double precision number: ¢,, ~ O(107*°) — O(10™'%)

The total error will saturation at: h ~ O(\/e,,) ~ O(107°)

This simply limit the precision of numerical derivatives,
and it cannot be better then 10-8, unless...

THE TRICK IS
ACTUALLY VERY SIMPLE...

h h h? h3

b 1)+ @)+ e+ @)+
h h B2 .
;

A QUICK TRY AGAIN!

import math

def f(x):

return x*k2+math.exp(x)+math.log(x)+math.sin(x)
def fp(x):

return 2.xx+math.exp(x)+1./x+math.cos(x)

X, h=0.5, 1E-2
fp_exact = fp(x)

while h>1E-15:

fp_numeric = (f(x+h/2.) - f(x-h/2.))/h < Update here
print('h = %e' % h)

print('Exact = %.16f,"' % fp_exact, end=" ")
print('Numeric = %.16f,"' % fp_numeric, end=' ')

print('diff = %.16f

h /= 10.
/ / " 1202-example-0la.py

[\ 3 &
A\\-)

% abs(fp_numeric-fp_exact))

A QUICKTRY AGAIN! (Il

Output:

e

= pi = i = p = = N = B~ - 2~ - 2 - B - A -

le-02,
le-03,
le-04,
le-05,
le-06,
le-07,
le-08,
le-09,
le-10,
le-11,
le-12,
le-13,
le-14,

Exact = 5.5263038325905010

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

5.5263737163485871,
5.5263045313882486,
5.5263038395758635,
5.5263038326591731,
5.5263038325481508,
5.5263038323261062,
5.5263038367669983,
5.5263036369268530,
5.5263038589714579,
5.5263349452161474,
5.5266902165840284,
5.5266902165840284,
5.5511151231257818,

diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff

0.0000698837580861
0.0000006987977477
0.0000000069853625
0.0000000000686722
0.0000000000423501
0.0000000002643947
0.0000000041764974
0.0000001956636480
0.0000000263809570
0.0000311126256465
0.0003863839935274
0.0003863839935274
0.0248112905352809

PRECISION VERSUS
FINITE DIFFERENCE

® Naturally the full precision does depend on both
the step size as well as the actual formulation:

useless accuracy

Source:Wikipedia |

104 1[N

10—8..

10712 M
desired accuracy

10—16
ZLSK 101 10712 10°
f\‘f) ————

|3

A FURTHER Y
IMPROVEMENT P Le

m Let's repeat the trick of “cancellation”:

h h h? h3
h h / h? 7 h? 111
f(f—z)%f(f)—zf(wwrﬁf (f)—@f () + ...

1 h?
; 3 /') H 1ga " (@ O

Simply repeat the same trick to remove the h2 term.

[\ 4
,\\- -)

A FURTHER
IMPROVEMENT (II)

® Then

et -S| |fe+ry - fa-§)
h | h

frllumerical (Qj) ~

8fle+3)—8f@—3) - fla+5)+/(=—3)
l 3h

Take this term and neglect the rest

- 1 —16
The total error ~ O(h*) + O (%) ~ O(h*) + (Oh)

The total error will saturation at O(10-13) if h ~ 0(671,”/5) ~ 0(10_3)

;
[\ >
,\\- -)

JUST CHANGE A LINE..

import math

def f(x):

return x*k2+math.exp(x)+math. log(x)+math.sin(x)
def fp(x):
return 2.xx+math.exp(x)+1./x+math.cos(x)

x, h=0.5, 1E-2
fp_exact = fp(x)

while h>1E-15:
fp_numeric = \ ¢ Update here (note: a backslash “\” can wrap a python lin

(8.%f(x+h/4.)+f(x-h/2.)-8.xf(x-h/4.)-f(x+h/2.))/(h%x3.)
print('h = %e' % h)

print('Exact = %.16f,"' % fp_exact, end="' ')
print('Numeric = %.16f,"' % fp_numeric, end="' ')

print('diff = %.16f
h /= 10.

% abs(fp_numeric-fp_exact))

1202-example-01b.py

)

[\\] 6
—y >

JUST CHANGE A LINE...(—.

Output results:

Exact = 5.5263038325905010

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

le-02,
le-03,
le-04,
le-05,
le-06,
le-07,
le-08,
le-09,
le-10,
le-11,
le-12,
le-13,
le-14,

= pi = i = p = = N = B~ - 2~ - 2 - B - A -

5.5263038315869801,
5.5263038325903402,
5.5263038325925598,
5.5263038327701954,
5.5263038328442100,
5.5263038249246188,
5.5263037257446959,
5.5263040070011948,
5.5263127407556549,
5.5263497481898094,
5.5258020381643282,
5.5215091758024446,
5.5807210704491190,

diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff

0.0000000010035208
0.0000000000001608
0.0000000000020588
0.0000000001796945
0.0000000002537091
0.0000000076658822
0.0000001068458051
0.0000001744106939
0.0000089081651540
0.0000459155993084
0.0005017944261727
0.0047946567880564
0.0544172378586181

HOW ABOUT THE
SECOND DERIVATIVES?

f’(lE) ~ f(37 + §)

h

— - @) f(w+h})b—f(x) . f(w)—{b(:v—m

h h

fla+h)+ flx—h)—2f(z)
12

f'(x+3)

()

RECE

0~ 16
The total error ~ O(h*) + O <h2) ~ ()
The total error will saturation at O(10-8) if h ~ O(¢, L/ ~ 0(107%)

|18

HOW ABOUT THE
SECOND DERIVATIVES? (Il) A5

import math

\

b}

\§
L
»)

def f(x):

return xskx2+math.exp(x)+math. log(x)+math.sin(x)
def fp(x):

return 2.xx+math.exp(x)+1./x+math.cos(x)
def fpp(x):

return 2.+math.exp(x)-1./(x*x)-math.sin(x)

X, h =0.5, 1E-2

fpp_exact = fpp(x) Nothing really different comparing
T P . to the previous code...
fpp_numeric = \
(f(x+h)+f(x=h)-2.%f(x))/(hxh)
print('h = %' % h)
print('Exact = %.16f,"' % fpp_exact, end=" ')
print('Numeric = %.16f,"' % fpp_numeric, end=" ')
print('diff = %.16f' % abs(fpp_numeric-fpp_exact))
| h /= 10.

1202-example-0 1l c.py
& 19

HOW ABOUT THE

SECOND DERIVATIVES? (\H)

f(x) = 2 + exp(x) + log(z) + sin(z)

Output results:

f"(x) =2+ exp(z)

1

X

2

— — —sin

The analytical solution,

()

=R = N = R = N - B - - A - 3

= le-02,
= le-03,
= le-04,
= le-05,
= le-06,
= le-07,
= le-08,
= le-09,

Numeric =

Numeric
Numeric

Numeric =

Numeric
Numeric

Numeric =

Numeric

Exact = -0.8307042679040748

-0.8314867467085207,
-0.8307120906714260,
-0.8307043497524091,
-0.8307043941613300,
-0.8304468224196168,
-0.8437694987151185,
+4.4408920985006244,
+0.0000000000000000,

diff =

diff
diff

diff =

diff
diff

diff =

diff

0.0007824788044459
0.0000078227673512
0.0000000818483343
0.0000001262572552
0.0002574454844581
0.0130652308110437
5.2715963664046992
0.8307042679040748

;;\\\

You can See the precision §ov znd ovder devivative 1S
(wuch) wovse 1§ we only take the leading tevm,

20

HOMEMADE CODE
VS PUBLIC CODE

m Although we have practiced some of the classical algorithm, you'
may use them in your own daily work. But sometimes is still
recommended to use the well-tested professional code if they are
available.

Homemade(?) Bat Car A Porsche

HHOMEMADE CODE
VS PUBLIC CODE (Il P&

Homemade Code Public Code

® Pro ® Pro
1 As the author you know the code to [Well tested, good protections (less
details. Not a black box. chance to break down at some extreme
) Can be optimized for special cases case).
(may be faster for your own I More optimized, can be faster in
application). most of the cases.
¥ Con ¥ Con
) Less tested (may break at some -1 A black box unless you really go
special condition) through the codes.
1) Less optimal (may be slower in I May not fully fit your needs.

general cases)

; The actudl choice: depends ow youv Problemw!

)[\ 22
-

GETTING START WITH
NUMPY & SCIPY

FROM THE OFFICIAL WEBSITE:

m NumPy’s array type augments the Python language with an
etficient data structure usetul for numerical work, e.g.,
manipulating matrices. NumPy also provides basic numerical

routines.

m SciPy contains additional routines needed in scientific work: for
example, routines for computing integrals numerically, solving
differential equations, optimization, etc.

In short:

NumPy = extended array + some routines
SciPy = scientific tools based on NumPy

TYPICAL WORK FLOW

Working on your own

research topic (TH/EXP)
-

Need numerical analysis
for resolving some
numerical problems

-

Write your code with
standard math module

N

You can think NumPy/SciPy are Inothingu
more than a bigger math module.
Don'’t think they are something very fancy!

still not
enough...

Other solutions:
if not Google other package /
enough... write your own
Adding p algorithm / Use a
NumPy /SciPy/ etc. different language /
- etc...

-

>

Problem solved!

24

NUMERICAL DERIVATIVES
IN SCIPY

m Just google — and you'll find it’s just a simple function:

GO gle scipy numerical derivative Q

2% I ®h Zhpe bl EF R IR

AF €8.500 TSR (RERM : 0.30 #)

scipy.misc.derivative — SciPy v0.18.1 Reference Guide

httpe:f/icocs scipy.org/dec/scioy-0.18.1/.../ecipy.misc.derivative .htm| v #:i# A EHA R
Parameters: func - function. Input furction. x3 : float. The point at which n-th derlvative Is found. dx :
floal, oplional. Spacing. n - inl, ooticral. Order of the derivalive. Default is 1. ags | luple, oostional.

Arguments. order : int, optional. Number of points to use. must be odd. ‘

Scipy.org SciPy v1,0,0 Reference Guide Miscellaneous routines (seipy.mige)

scipy.misc.derivative

scipy.misc.derivative(func, x0, dx=1.0, n=1, args=(), order=3)
Find the n-th derivative of a function at a point.

Given a function, use a central difference formula with spacing dxto compute the n-th derivative at x0.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html
25

http://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.derivative.html

LET'S GIVE IT ATRY

import math
import scipy.misc as mM1SC < import scipy.misc module

def f(x):

return x*kx2+math.exp(x)+math. log(x)+math.sin(x)
def fp(x):

return 2.xx+math.exp(x)+1./x+math.cos(x)

X, h=0.5, 1E-2
fp_exact = fp(x)

while h>1E-15:
fp_numeric = misc.derivative(f, x, h) <justcallit
print('h = %e'
print('Exact = f,' % fp_exact, end=" ")
print('Numeric = %.16f,"' % fp_numeric, end=' "')
print('diff = %.16f' % abs(fp_numeric-fp_exact))

; h /= 10.

1202-example-02.py
= ”
—y >

LET'S GIVE IT ATRY (Il

This gives us the best precision of O(10-1°) when h~10-%.

= p= = p = i = p = i = i = N = - 2 - - -)

le-02,
le-03,
le-04,
le-05,
le-06,
le-07,
le-08,
le-09,
le-10,
le-11,
le-12,
le-13,
le-14,

Exact = 5.5263038325905010

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

5.5265834157978029,
5.5263066277866368,
5.5263038605413151,
5.5263038328479110,
5.5263038326591731,
5.5263038323261062,
5.5263038589714588,
5.5263038589714579,
5.5263038589714579,
5.5263127407556549,
5.5260240827692533,
5.5278004396086535,
5.5289106626332787,

diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff
diff

0.0002795832073019
0.0000027951961359
0.0000000279508141
0.0000000002574101
0.0000000000686722
0.0000000002643947
0.0000000263809579
0.0000000263809570
0.0000000263809570
0.0000089081651540
0.0002797498212477
0.0014966070181526
0.0026068300427777

27

Very similar situation found!

GOTO HIGHER ORDER -/

This gives us the best precision of O(10-!1~10-12) when h~10-.
Not a dramatically improvement...

x, h =0.5, 1E 2
fp_exact = fp(x)

while h>1E-15: Jl update here
fp_numeric = misc.derivative(f, x, h, order=5)

print('h = %e' % h)
/ 1202-example-02a.py (partial)

h = 1le-02, Numeric = 5.5263035753822134, diff = 0.0000002572082876
h = 1e-03, Numeric = 5.5263038325648601, diff = 0.0000000000256408
h = le-04, Numeric = 5.5263038325881197, diff = 0.0000000000023812
h = 1le-05, Numeric = 5.5263038325537019, diff = 0.0000000000367990
h = 1le-06, Numeric = 5.5263038325481508, diff = 0.0000000000423501
h = 1le-07, Numeric = 5.5263038328812177, diff = 0.0000000002907168

28

COMMENTS

® You may already observed during our tests above, in the numeral
derivatives, it is important to minimize the total error rather than
the approximation error only:

0 Reducing the spacing h to a very small number is not a good

idea in principle; cancellation of higher order terms are more
effective.

O In any case the numeral derivative cannot be very precise.

0 Some algorithms can reduce the spacing according to the
estimated approximation error. This is called “Adaptive

Stepping”, e.g.)
Lo h ep \ 3 €gr:rounding error
T B T | 2€T €T : approximation error
Updated |Initial
stepping stepping = for your own further study.

‘Z\ | 27

INTERMISSION

You have learned that the central difference method cancels the
term up to f”, and the improved higher order method cancels the
term up to /7. You may try the code (1202-xample-0la.py and
1202-example-01b.py) and calculate the numerical derivative
for a polynomial up to x2 and x3. Can the calculation be 100%
precise or not?

For example you may try such a simple function:
f(x) = bz® + 42° + 3z + 2
— f'(z) = 152* + 8x + 3 \

30

NUMERICAL
INTEGRATION

m Starting from some super basic integration rules:

..‘I 'J
y 2] EEE] SRR N .__"
A \ e : /
"\. - ’ .". \ . P . "
. . . |

' oo e

/[w// 4 L-—-e\.\ Trapezoidalrule | f
2| P e S

7. ' =17 ':; :

NUMERICAL
INTEGRATION (I

m Let's practice a classical integration: the trapezoidal rule, e.g.

(13
fle)=x — 22+ 2° — z* 4 sin(13z)
13
- /f(x)dx—x—Q—xS | 334_513_5_COS(13$)
2 3 4 5 169
L

0.2F

0.1

0.05]

D....I...l... PP PR P PP P P BT PP R
0 0.1 0.2 0.3 0.4 0.5 D.6 0.7 0.8 Do 1
L — E——
Z\\ 32
—y P

TRAPEZOIDAL RULE:
IMPLEMENTATION

import math

def f(x):

return X — X*k%2 + X**%3 — x*x*4 + math.sin(x*13.)/13.
def fint(x):

return x%x2/2. — xk%3/3. + x*kk4/4. - xk%k5/5. -
math.cos(x%13.)/169.

fint_exact = fint(1.2)-fint(0.)
area, X, h =0., 0., 1E-3 &< start with h = 10-3
fo = f1 = f(x)

while x<1.2-h*x0.5:
fo, f1 = f1, f(x+h) Exact: 0.1765358676046381,
X += h Numerical: 0.1765352854227494,
area += f0+f1 diff: 0.0000005821818886
area x= h/2.

rint('Exact: %.16f, Numerical: %.16f, diff: %.16f"' \
(fint_exact,area,abs(fint_exact-area)))
" 1202-example-03.py

|
ﬁ‘\ | 33
- >

P
%

HOW ABOUT
A SMALLER STEP SIZE!

As expected, the precision cannot be improved by simply using a
smaller h.

It's very time consuming: smaller h, more operations, more
computing time needed.

= p = = pi = N = p = N = 3

le-02,
le-03,
le-04,
le-05,
le-06,
le-07,
le-08,

Exact = 0.1765358676046381

Numeric = 0.1764776451750985,
Numeric = 0.1765352854227494,
Numeric = 0.1765358617829089,
Numeric = 0.1765358675475263,
Numeric = 0.1765358676034689,
Numeric = 0.1765358677680409,
Numeric = 0.1765358661586719,

diff
diff
diff
diff
diff
diff
diff

0.0000582224295395
0.0000005821818886
0.0000000058217292
0.0000000000571118
0.0000000000011692
0.0000000001634028
0.0000000014459662

34

ERROR ANALYSIS:
APPROXIMATION ERROR

m Consider Taylor expansions for f(x):

h? h
f(z+h) = fz) + hf'(z) + o f(@) + = f7(2) + ...

Exact integration: .
/ flz +mn)dn =
0

Trapezoidal rule:

h? 4/
Error per interval: § ~ Ef”(x) +

Approximation error: €approx ~ O(h?) x

J
)[\ 3
—— »

ERROR ANALYSIS:
TOTAL ERROR

If we believe the theory:

L
€Eroundoft = O(V Néy,) N 7= total no. of operation steps.

The total error:

etotal © O(VNep,) + O(h?) = O (f}%) - O(h?)

For a double precision float point number, €, =~ O(10~°) — O(10~1°)

The best precision will be of @(10-12) when h ~ O(e}/%%) ~ O(107°)

Well, this Is just an order of magnitude guess,
usually it's highly dependent on the algorithm and your exact coding.
(also, smaller h means much more computing time!)

36

® Another classical method: Simpson's Rule.

® Instead of liner interpolation, we could use a 2nd-order (parabola)

interpolation along 3 points:

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

THE FORMULAE

1 +1
flz)~az® +br+c m ' f(a:)dw:{gaz?’—l—éf—kcx] :2—a—|—20
1 3 2 43
f(+l)~a+b+c 1
f(0) = c Solve a,b,c / f(z)dx = f(=1) | 4/10) | f(+1)
1 3 3 3
f(=)~a—-b+c
2h
Simpson’s rule: f(z+n)dn ~ gf(:c) + %f(:l? + h) + gf(x + 2h)
0

Total integration:

h 4h 2h Ah o2h 4h h
dr ~ — - I = 2 i SN I
! /f(ar):c 3f1+3f2+3f3+3f4+3f5+ +3fN1+3fN

IZ‘\)

38

SIMPSON'S RULE:
IMPLEMENTATION

import math

def f(x):

return X — X*k%2 + X**%3 — x*x*4 + math.sin(x*13.)/13.
def fint(x):

return x%x2/2. — xk%3/3. + x*kk4/4. - xk%k5/5. -
math.cos(x%13.)/169.

fint_exact = fint(1.2)-fint(0.)
area, x, h=0., 0., 1E-3
fo = f1 = f2 = f(x)
while x<1.2-h*x0.5:
N Exact: 0.1765358676046381,
fo, 1, 2= 12, T0xth), TOxH*2.) g merical: 0.1765358676063498,
Srea 4= fO+Flxd.+2 diff: 0.0000000000017117

area *x= h/3.

r%nt('Exact: %.16f, Numerical: %.16f, diff: %.16f"' \

P
%

fint _exact,area,abs(fint_exact-area)))

" 1202-example-04.py

‘[\ | 3
T P

SIMPSON'S RULE:
ERROR ANALYSIS

® Could we cancel the O(h3) and O(h4) term?

h ~ h / h2 /! h3 /77 h4 (4)
flx +h) =~ f(x)+ f(:v)+7f (@Jrgf (CU)JFﬂf ()% ..

f(z+2h) & f(x) + 2hf' (@) + 2h° " (@) + — " (2) + - [V (@) + ..

gf(a:)—l— %f(aj—kh)#— gf(a:JrQh)
3 4 5
S Ohf(x) + 207 () + 5 () + T () 2 O) +
2h h3 h4 h5
/0 f(a + m)dn ~Rhf (@) + 202 (@) + 5 () + @) T f O @)+

h5
6~ %f(‘” () + ... ™ oo = O(Rh°) ¥

&)
— >

SIMPSON'S RULE:
FRROR ANALYSIS (1) |

The total error is given by:

€total = O(VNey,) +O(hY) = O (6—\/7%> +O(n*)

The best precision could be of @(10-14) when h ~ O(eX/*%) =~ O(10™%)

Is it true? Not too bad in principle...

= p = i = pi = N = i = p = 3

Exact = 0.1765358676046381
= le-02, Numeric = 0.1765358847654857, diff = 0.0000000171608476
= le-03, Numeric = 0.1765358676063498, diff = 0.0000000000017117
= le-04, Numeric = 0.1765358676047102, diff = 0.0000000000000721
= le-05, Numeric = 0.1765358676043926, diff = 0.0000000000002455
= le-06, Numeric = 0.1765358676131805, diff = 0.0000000000085424
= le-07, Numeric = 0.1765358676224454, diff = 0.0000000000178073
= le-08, Numeric = 0.1765358675909871, diff = 0.0000000000136510

;r\\

41

COMMENTS

® Maybe you already realized the general rule:

0 The approximate error of numerical integration heavily
depends on the algorithm (cancellation of higher order error).

0 The round-off error and speed of calculation depend on the
number of steps.

0 The best algorithm: as less steps/points as possible, with as
higher order as possible.

0 Adaptive stepping can be a solution.

0 Many integration rules can be generalized as sum of the
weights times the function f(x) values, ie.

N
~ N | The art is to find the best
/ f(z)de ~ Zl wi - f(xi) approximation of Wi with smallest N!
1[\ 2
— >

INTERMISSION

m Those “fixed points” integration rules have several limitations —
such as you cannot integrate over singularities. Try to integrate
over some functions with singularities and see what will you get?

m Consider a function of polynomials up to x3 but without knowing
its exact form. How many points of f(x;) are required to calculate
its exact integration at least?

THE TRICK!

m Consider a function of polynomials up to x3 but without knowing' ‘
its exact form. How many points of f(x;) are required to calculate
its exact integration at least?

® Maybe you are thinking of 4 times since one needs already 3

points to describe a full parabola (up to x2). But in fact we only
need to calculate TWICE.

Consider a function like: f(z) = c3z® + cax® + c1z + co

In fact you only need to calculate f(x) twice
to get an exact integration in [-1,+1]

+1 1
1:/ fle)de = 3 wif (@) = (=) + ()

—1

[\ 4
.\\- -)

g
V3

HOW [T COMES!

+1

flxy=1 = I:/ ldx = 2 = w1 + ws
~1

And this +l
integration should fla)=2z = I= /1 L — U

valid for any f(x) 1 5

pto O3 flz) =22 = = / rdr =5 = w1z} + waa3
—1

+1
flz)=2°> = I:/ r3de = 0 = w5 + waTs
~1

Solve 4 questions —1 _ L
| = wi, W — 1, X1,L2 — I
’ for 4 unknowns:

Z\ »
A\\- J)

=

HOW ABOUT HIGHER
ORDER SOLUTIONS!?

® In a similar way one consider the case of 3 points, which should be
able to solve the exact integration up to x5.

AY

-

B —

f(x1)
£02)g(x)

46

2 points
= 4 unknowns (xi, wi)
= solve up to x9, x!, x4, x3

3 points
= 6 unknowns (X, W)
= solve up to X9, x!, x2, x3, x4, x>

HOW ABOUT HIGHER
ORDER SOLUTIONS!?

6 unknowns

+1
I:/ f(z)dr = wyi f(x1) + wa f(xs) + w3 f(x3)

—

+1

fle)=1 = I:/ lde =2 = wy + ws + w3 .
1 wy = -
+1 9
flry=2z = I:/ xdr =0 = wix1 + wako + W3x3 8
—1 Wo = 5
+1
2
flx)=2* = I:/ ridr = = = w12 + woTs + W3T3 w3—§
-1 3 = 0
+1
3
flz) =2 = I:/ r3dr = 0 = w23 + wexh + w3Ts T1=)¢
~1
+1 — 0
2 T2
flz)=2* = I= / rtdr = == W1T] + Woks + WaTs z
~1
5 s 5 5 5 e 5
fley=2> = [= r’dr = 0 = wiz] + waxy + wsTs
~1 Solve 6 questions

for 6 unknowns.
47
,\\- -)

GAUSSIAN QUADRATURE /4

® In fact this is called Gaussian quadrature of 2 and 3 points. By
choosing proper locations of x and the associated weights on f(x),
one can minimize the needs of calculation and get the best
estimation of a fixed 1D integration.

Adjusted stepping
A Y Fixed stepping: A u

to exact higher
Trapezoidal/Simpson's order term
h hl h] AN AN
N A
> >
} X X1 X2 X

GAUSSIAN QUADRATURE £/
(CONT)

m For a simple integration problem we

discussed above, the associated Number °1f B P°i":"x" w‘“"zts’ o
polynomials are , N \/g 1
Legendre polynomials P,(x), and . 5
the method is usually known as 3 N \/g ;
Gauss-Legendre quadrature.) 2 S
m Given with n-points we get the exact . i\/? “HE
integration up to x2n-1 power, the :t\/ 342,/8 | Ly
next term x2n is the approximation 0 b
€ITor. i i%\/’j _9 17_0 32-2)%3\/7_0

m Several lower order points
(x; are the roots of Pa(x) =0) ==

[\ B
,\\- -)

1 e , o /10 | 322=13y/70
:l:g\/-)-{-z 7 900

F NOT WITHIN [, +17

In general case an integral over [a, b] must be transformed into an
integral over [-1,+1] before applying the Gaussian quadrature rule.
This change of interval can be carried out as following;:

/f

_ +1 _
b a/ f(b am I CH_b)dx
1 2 2

b— a — b—a a+b

Nothing special but a simple coordination
transformation would work.

50

1

: ",..". -.f.
!

A QUICK IMPLEMENTATION

A ; ‘
ol 4
N B a.' ’

® Let’s implement an example calculation with 21 points:

ﬁégﬁﬁfﬁaftzi fint(1.2)-fint(0.) I see the code for the full table

welghts [[0.1460811336496904, +0.0000000000000000]

’

' [0.0160172282577743, +0.9937521706203895]]
area, min, max = 0., 0., 1.2

for i in range(npoints):
X = ((max-min)*xweights[i] [1] + (max+min))/2.
area += f(x)xweights[i] [0]

area *x= (max-min)/2.

print('Exact: %.16f, Numerical: %.16f, diff: %.16f' \
% (fint_exact,area,abs(fint_exact-area)))

" 1202-example-05.py (partial)

Exact: 0.1765358676046381, , o ,
Numerical: 0.1765358676046379, With almost full precision with only
, diff: 0.0000000000000002 21 points; Note the Simpson’s rule

‘[\ requires 10K operations!
. 5]
~ O

WHEN THE CODE BREAKS? /)4

® In order to see the “break down” of the integration, let’s try to
integrate over a simple polynomial up to x:

flx)=1+z+2*+2°+-- -+ 2"

® The corresponding f(x) and fint(x) are:

def f(x, n): n_o
val = 0. ‘sz
for i in range(n+1): val += xxkxi i—0
return val

def fint(x, n):
val = 0. ‘|§Z:
for 1 in range(n+1): val += xxk(i+1)/(i+1) i=0

return val
" 1202-example-05a.py (partial)

Z\] >2
—y >

WHEN THE CODE BREAKS? 47

(CONT) p<

m In order to see the effect easier — implement a

5-point Gauss—-Legendre quadrature instead of the 21-point version.

npoints
weights

min, max

darea

5
[

X =

(0.5688888888888889, +0.0000000000000000]
(0.4786286704993665, -0.5384693101056831
10.4786286704993665, +0.5384693101056831)
10.2369268850561891, -0.9061798459386640]
(0.2369268850561891, +0.9061798459386640.
0.

for n in range(15):
fint_exact = fint(max,n)-fint(min,n)

v = ~w

, 1.

0.

for i in range(npoints):

((max-min)*xweights[i] [1] + (max+min))/2.

area += f(x,n)*xweights[i] [0]

o)
)

area *= (max-min)/2.
print('Power: %2d, Exact: %.16f, Numerical: %.16f, diff: %.16T"' \

(n, fint_exact,area,abs(fint_exact-area)))
53 / I202-example-05a.py (partial)

WHEN THE CODE BREAKS? _£7

(CONT.)

The integration does break after x2:

f(a:):1+x+x2+x3+---+x9+w10+---

Not the rest...

A 5-point integration rule can be exact up to here.

Power:
Power:

Power :
Power :
Power :
Power :
Power :
Power :
Power :
Power:
Power:

-
-

-

O 00 N O o
N~ 0~

-

10,
11,
12,
13,
14,

Exact:
Exact:

Exact:
Exact:
Exact:
Exact:
Exact:
Exact:
Exact:
Exact:
Exact:

1.0000000000000000,
1.5000000000000000,

2.5928571428571425,
2.7178571428571425,
2.8289682539682537,
2.9289682539682538,
3.0198773448773446,
3.1032106782106781,
3.1801337551337552,
3.2515623265623268,
3.3182289932289937,

Numerical:
Numerical:

Numerical:
Numerical:
Numerical:
Numerical:
Numerical:
Numerical:
Numerical:
Numerical:
Numerical:

1.0000000000000000,
1.5000000000000002,

2.5928571428571430,
2.7178571428571425,
2.8289682539682537,
2.9289682539682538,
3.0198759133282937,
3.1032013731418489,
3.1800998537274987,
3.2514709047199117,
3.3180253879631731,

diff:
diff:

diff:
diff:
diff:
diff:
diff:
diff:
diff:
diff:
diff:

0.0000000000000000
0.0000000000000002

0.0000000000000004
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000014315490509
0.0000093050688292
0.0000339014062565
0.0000914218424151
0.0002036052658205

54

Remark: What will you get if you
still do 21-point integration?

NUMERICAL INTEGRATION
WITH SCIPY

® You'll find there are many different integration tools in SciP
mm SciPy v1,0.0 Reference Guide

Integration and ODEs (scipy.integrate)

The quad is a general integration

Integrating functions, given function object tool with QUADPACK.
quad(func, a, bf, args, fall_output, ...]) Cempute a definite integral. R From the name you can
dblquad(func, a, b, gfun, hfun[, args, ...)) Ccmpute a double integral.

tplguad{fung 4, b, gfun, hun, glan, riun) Cempule g rip'e (definite) integral. a’ready guess the a’gor,thm"

nquad(func, ranges|, args, cpts, full_output]) Integration over multiple variables

fixed_quad(func, a, b, a'gs, n]) Ccmpute a definite integral using fixed-order Gaussian quadréture.
quadrature(funr, a, b[args, tal, rtal, ..]) Cempute a definite integral using fixed-telerance Gauss an quadrature.
romberg(function, a, b, args, tol, rtol, ...]) Remberg integration of a callable function or method.
quad_explain{[output]) Prnt extra information about irtegrate.quac() parameters anc returns.
newton_cotes(rn[, equal)) Return we ghts and error coefficient for Newton-Cotes integration.
IntegrationWarning Warning onissues during integration.

Integrating functions, given fixed samples

trapz(yl, x, dx, axis]) Integrate along the given axis Jsing the compceste trapezoidal rule.

cumtrapz(yL. x. dx, axis, nital]) Cumulatively integrate y(x) using the composit2 trapezoidal rule.

simps(yl, x, dx, axis, even]) Integrate y(x) using samples along the given axis and the composite Simpson's rule.
romb(y[, cx, axis, show)) Romberg integration usirg samples of a function.

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate
55

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

INTEGRATION WITH
QUAD() FUNCTION

import math
import scipy.integrate as integrate

def f(x):
return X — X*x*x2 + X**3 — X**%4 + math.sin(x%13.)/13.

def fint(x):
return x%x2/2. — x*kk3/3. + xkk4/4. — xxkx5/5. -

math.cos(x*13.)/169.

fint_exact = fint(1.2)-fint(0.)

quad, quaderr = integrate.quad(f,0.,1.2,)
print('Exact: %.16f' % fint_exact)

print('Numerical: %.16f+-%.16f, diff: %.16f"' % \
(quad,quaderr,abs(fint_exact-quad)))
" 1202-example-06.py
Exact: 0.1765358676046381
Numerical: 0.1765358676046380+-0.0000000000000029
diff: 0.0000000000000001

‘Z\ | °6

FINAL REMARK

[t is very easy to use the NumPy/SciPy routines to do the
numerical derivatives and integration: just import the module, call
the function, get your results!

However the limitation of these functions is not different from our
homemade code: don’t use a too small stepping size!

You may find the integration is very precise and fast — this is due
to the algorithm in the QUADPACK (based on Gaussian
quadrature and written in Fortran). You can check the online
document for details.

There are few other functions provided by SciPy library for solving
the problems in different cases. You can again, dig out more by
yourself!

57

HANDS-ON SESSION

W Practice 1:
Integration rules with even higher orders can be constructed easily,
for example, comparing Simpson’s rule to 3/8 rule:

, 2h h 4h h
Simpson [order 2]: f(x+n)dn~ §f(x) + Ef(a: + h) + gf(:z; + 2h)
0

3/8 [order 3]:
3h 3

o f(a:—l—n)dnmgf(:c)+%f(x+h)—l—%f(:c—l—Qh)—l—%f(x—l—Sh)

Try to modify 1202-example-04.py to implement the 3/8
integration rule and see how precise you can get?

IZ\ | >8

HANDS-ON SESSION =/

Practice 2:

The integration of cosine function is sine; let’s modify the
1202-example-06.py [integration with the quad () function]
code to calculate the integration of a simple cosine and see how
precise the calculation you can get, i.e.:

def f(x):

return math.cos (x)
def fint(x):

return math.sin(x)

by integrating f(x) over the intervals of [0,7t], [0,1007], [0,10007t],
[0,100.57], [0,1000.57]. Is it always very precise?

;Z\ >?

