TXDIAD
INTRODUCTION TO /\

NUMERICAL ANALYSIS

L o ™

Lecture 2-5:

Root finding & minimization

Kal-Feng Chen

National Taiwan University ;?

ROOT FINDING

Root finding is one of classical algebra problems since your high
school times...

For a given function f(x),

if f(x) = 0, what’s the x?

A CLASSICAL METHOD: 4/
FIND THE ANSWER WITH YOUR EYES AT i

A CLASSICAL METHOD:
FIND THE ANSWER WITH YOUR EYES AT

First plotting the
function

y =f(x)

y=(f(a), f(b)

> for f(a) <0< f(b)
lespecially if f(a), f(b) — 0]
There may exist a root with x € (a,b)

x:=(a:, b)

! (Assessment: try to find an invalid example!)
—y P

4

-

|ET DO SUCH A PRACTICE _#77
WITHYOUR COMPUTER A&7

m Suppose we know that there is an solution of f(x) = 0 for x €(a,b), /

5

how to find the best solution by your computer?

m Surely there is an “almost” trivial algorithm: the Bisection method

, a+b

Keep updating the boundaries
with the middle point of @ and b,
until reaching the limited precision.

LET'S GIVE IT A TRY! '

m Suppose that we are going to solve the following equation:

flo) =(@—=1)-(x-2)-(x=3)-(-4)-(z-5) =0

(x-1.)"(x-2.)7(x-3.)*(x-4.)"[x-5.)

— :

= :
i i
‘ T
.

AP Surely we know that
ﬁ-. e e s e e e there are 5 explicit
| ' ' | solutions.

A DEMO \MPLEMENTATION/

P

m A simple implementation of the Bisection method:

def f(x):
return (x=1.)%(x=2.)%(x=3.)*(x-4.)*(x=5.)

a, b=2.4, 3.4
fa, fb = f(a), f(b)

for step in range(50): < Let’s do maximum 50 iterations

C = (a+b)*x0.5 < Test point € — at the middle of aand b
fc = f(c)

print('Step: %2d, root = %.16f, diff = %.16f' % (step,c,abs(c-3.)))
if abs(a-c)<1lE-14: break < Limited precision = 10-!4

1T fcxfa>0.:

a, fa =c, fc
else:
| b, fb = ¢, fc

[;\ 3 !

1205-example-01.py

Terminal output:

A DEMO IMPLEMENTATION 47
() '

Step:
Step:
Step:
Step:
Step:
Step:

-

-

N wWhE=O
N~ ~

-

10,
20,
30,
40,

44,
45,
46,

root
root
root
root
root
root

root

root

root

root

root
root
root

2.8999999999999999,
3.1499999999999999,
3.0249999999999999,
2.9624999999999999,
2.9937499999999999,
3.0093749999999999,

3.0000976562499999,
2.9999999046325683,
3.0000000000931322,
2.9999999999999090,

2.9999999999999942,
3.0000000000000084,
3.0000000000000013,

diff
diff
diff
diff
diff
diff

diff
diff
diff
diff
diff

diff
diff

0.1000000000000001
0.1499999999999999
0.0249999999999999
0.0375000000000001
0.0062500000000001
0.0093749999999999

0.0000976562499999
0.0000000953674317
0.0000000000931322
0.0000000000000910

0.0000000000000058
0.0000000000000084
0.0000000000000013

8

i,

!

HIGHER ORDER METHOD(SY /4

m Although this bisection algorithm sounds not so smart, but it must
success (if the function is well behaved).

m For higher efficiency (speed), we could go for the algorithms with
an idea of higher order mathematics, e.g. Brent's Method:

Suppose we have three points: (x,y) =(a, f), (b, f»), (¢, fc)

Adopt Lagrange interpolation (=3 points parabola)

_ WL =F)e | W= —fla (= fe)ly— fa)b
(fe—fa)(fe=fo) (Fa=Fo)(fa—fo) (fo— fo)(fo — fa)

The best guess of root should be located at y = g(x) =0

‘[\ | ?
— >

BRENT'S METHOD

m Suppose x = b is the current best guess of root, the next

: .. P
best estimationis: d = b + —

Q

P=ST(R—T)(c—b)—(1—R)(b—a)]
Q=(T-1)(R-1)(S—1)
o Jo Ja

TR R

(CafC)

>

Then, we could pick up the best three values as the
new (a,b,c) for the next iteration.

LET'S TRY [T

a, b, c=2.4, 2.5, 3.4
fa, fb, fc = f(a), f(b), f(c

for step in range(50):

) < Now we need 3 points to host the search

R, S T fb/fc, fb/fa, f /fc

P = S>|<(T>I<(R T)>|<(c-b)—(1.-R)*(b-a)) < Simply copy the equations here!
Q = (T-1.)*(R-1.)*(S-1.)

d =b + P/Q

fd = f(d)

print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.)))
if abs(b-d)<1E-14: break
if faxfb>0.:

a, fa =Db, b .

b, fb = d, fd < Replace (a, b) with (b, d)
else:

’ fc = b, b .

g, fg = d, fd < Replace (¢, b) with (b, d)

z / 1205-example-02.py (partial)

e |l
Z\\ P

LET'STRY IT! (II

Terminal output is like this:

Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:

-

-

- - -

N ok WINERO
N N

-

root
root
root
root
root
root
root
root

-5.2064627478620000,
2.9693426221720163,
3.0066798826104528,
2.9998524472418411,
3.0000000378298575,
2.9999999999999534,
3.0000000000000000,
3.0000000000000000,

diff
diff
diff
diff
diff
diff
diff
diff

8.2064627478620000
0.0306573778279837
0.0066798826104528
0.0001475527581589
0.0000000378298575
0.0000000000000466
0.0000000000000000
0.0000000000000000

Well, it does happen: it does NOT guarantee the next step will
always gives a better guess of the root, especially if we
approximate the function by a 2nd order parabola.

Alternative fix: replace the next guess by Bisection method, if the
guess is bad /poor.

A FAIL-SAFE CODE

Simply fix the value of test point (d, £d) with
Bisection method if the resulting values are bad:

d =Db + P/Q

fd = f(d)

if (d-a)*x(d-c)>0. or abs(fd)>abs(fb):
if faxfb>0.: d = (b+c)*x0.5
else: d = (a+b)*0.5
fd = f(d)

\0

print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-3.)))
/ 1205-example-02a.py (partial)

Step: 0, root = 2.9500000000000002, diff = 0.0499999999999998
Step: 1, root = 3.0169811828014468, diff = 0.0169811828014468 ~ I good!
Step: 2, root = 2.9993946939327074, diff = 0.0006053060672926
Step: 3, root = 3.0000006446632410, diff = 0.0000006446632410
Step: 4, root = 2.9999999999917120, diff = 0.0000000000082880
Step: 5, root = 3.0000000000000000, diff = 0.0000000000000000
Step: 6, root = 3.0000000000000000, diff = 0.0000000000000000

“ —~—
J
T
__}
-

13

ALGORITHM WITH DERIVATIV
NEWTON'S METHOD

(NEWTON-RAPHSON)

m Well, where is the beloved method, which we have learned in
calculus course?

f”(il?) 9 Take out the
~ / |
f(ﬂj T 5) ~ f(a?) + f (:13)5 | 9 0" + ... 2nd order term

Next best root
will be d—b

current best root
satx=~>

IMPLEMENTATION:
NEWTON'S METHOD

def fp(x):
return (x-=2.)*(x-3.)*(x-4.)*x(x-5.) +
(x—=1.)%(x=-3.)%(x-4.)*x(x=-5.) +
(x=1.)%(x=2.)%(x-4.)*x(x=5.) +
(x—=1.)*%(x=2.)*%(x=3.)*%(x=5.) +
(x=1.)*%(x=2.)*(x=3.)*%(x-4.)
a, b, c=2.4, 2.5, 3.4
fa, fb, fc = f(a), f(b), f(c)
for step in range(50):
delta = —fb/fp(b)
d = b + delta
fd = f(d)
f (d-a)*(d-c)>0. or abs(fd)>abs(fb):
if faxfb>0.: d = (b+c)*0.5
else: d = (a+b)*0.5
fd = f(d)
print('Step: %2d, root = %.16f, diff =
if abs(b-d)<1E-14: break
d, fd

~ = =~

< Analytical solution

< Keep the protection as in the
Bisection method

%.16f' % (step,d,abs(d-3.)))

" 1205-example-03.py (partial)

’ b, fb =
ﬁis »

(SUPER-)FAST Y
CONVERGING ’

Terminal output:

Step: 0, root = 2.9500000000000002, diff = 0.0499999999999998

Step: 1, root = 3.0003151394705090, diff = 0.0003151394705090

Step: 2, root = 2.9999999999217564, diff = 0.0000000000782436

Step: 3, root = 3.0000000000000000, diff = 0.0000000000000000

Step: 4, root = 3.0000000000000000, diff = 0.0000000000000000
M Just 3—4 steps!

Q: Why not to use the numerical derivatives?

A: As we have discussed before, it's very hard to have precise
numerical solution for the derivatives. In this case the solution
will be limited by the best precision of the derivative calculation.
It's generally not a recommended way (but still “doable”).

INTERMISSION

® With Newton’s method:

o What will happen if you remove the failed safe protection (the
block of using Bisection method)?

0 Try to run the calculation with numerical derivative, how good
is the solution?

def fp(X): <You can try this by yourself!
h = 1E-5
return (f(x+h/2.)-f(x-h/2.))/h

/ 1205-example-03a.py (partial)

m Try to find a not-working-so-well problem!

[\ 3 7
.\\- -)

SOME MORE
PRACTICAL EXAMPLES!

Let's implement a function with Newton's method to calculate
square-root and cubic-root. This is one of the places this method
can do the work easily!

The usual square-root function is sgrt (), and we can only use the
pow () function or the ** operator to calculate cubic-root.

If we are looking for the square-(cubic-) root of a real number R, it's
equivalent to find the root of

fx)=2—R or f(z)=2°—-R
The corresponding first derivatives are
f'(x) =22z or f(x)=32"

The implement the code should be very easy!

L\ '8

QUICK &
SIMPLE
CODE

Basically the
implementations are
the same; the only
difference are the local
functions fsq() and

fsap().

def

def

squareroot(R):
fsg = lambda Xx:x*x-R
fsgp = lambda Xx:2.%X

a, b, c =0., Rx0.5, R
fa, fb, fc = fsqg(a), fsq(b), fsq(c)
for step in range(50):

delta = -fb/fsqgp(b)

d =b + delta

fd = fsq(d)

if abs(b-d)<1E-14:
b, fb = d, fd

cubicroot(R):
fcb = lambda Xx:x%kxkx—-R
fcbp = lambda X:3.%Xx*%X

a, b, c =0., Rx0.5, R

< local functions

return d

fa, fb, fc = fcb(a), fcb(b), fcb(c)
for step in range(50):

delta = -fb/fcbp(b)

d = Db + delta

fd = fcb(d)

if abs(b-d)<1E-14: return d

b, fb = d, fd

e 1205-example-04.py (partial)

19

K

|ET'S TRY THE FUNCTIONSH .

This is almost a trivial task:

R = 1234.

print('root = %.16f, diff = %.16f"' \
(squareroot(R),abs(Rxx0.5-squareroot(R))))
\

print('root = %.16f, diff = %.16f' %
(cubicroot(R),abs(R**x(1./3.)-cubicroot(R))))
/ 1205-example-04.py (partial)

o°

0.0000000000000000
0.0000000000000000

root
root

35.1283361405005934, diff
10.7260146688273235, diff

Surely this code is very slow if we compare to the standard
operator, but this is a very good example that almost all the
math functions can be implemented in a similar way!

‘Z\ 29

USE THE FUNCTIONS :
SCIPY RAEE

m Everything is under scipy.optimize:

http://docs.scipy.org/doc/scipy/ referencé/optiize.html

@ ScCiPy.org i mmousnr

Optimization and root finding (scipy.optimize) Table Of Centents
e Optimization and root
Optimization finding
(scipy.optimize)
Root finding
You can see some Scalar functions
familiar names here! brentq(f, a, b[, args, xtol, rtal, maxiter, ...J) Find a root of a function in a bracketing interval using

Brent's method.
brenth(f, a, b[, args, xtol, rtol, maxiter, ...]) Find root of f in [3,b].
ridder(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in an interval.
bisect(f, g, b[, args, xtol, rtol, maxiter, ...]) Find root of a function within an interval.
newton(func, x0[, fprime, args, tol, ...]) Find a zero using the Newton-Raphson or secant method.

http://docs.scipy.org/doc/scipy/reference/optimize.html

USING THE SUPER EASY
SCIPY FUNCTIONS

® Just import the scipy.optimize and call the corresponding method:

import scipy.optimize as opt

def squareroot(R):
fsq = lambda Xx:x*x-R
fsgp = lambda Xx:2.%X

return opt.newton(fsq,Rx0.5,fsqp) < Just call it!
R = 1234.

print('root = %.16f, diff = %.16T"' % \
(squareroot(R),abs(Rxx0.5-squareroot(R))))

" 1205-example-05.py

root = 35.1283361405005934, diff = 0.0000000000000000

)
[‘\] 22
.\\— _)

MINIMIZATION OR
MAXIMIZATION

®m Method in calculus - find the zero first derivative:
fflx)=0 — x=7

» How about the numerical method?

B Yep, you can probably already apply what we learned from the
previous section, to find the root of f'(x) = 0 if we know the first
derivative already.

m If not, this is what we are going to discuss now.

ONE DIMENSIONAL
SEARCH IN A BRACKET

® This method is very simple: if we have a bracket (a,b,c), and f(b) ¥
fla), f(c), and b is the current best minimum:

Keep updating the bracket by replacing
(a,b,c) with (a,b,d) or (b,d,c) until a desired
precision.

We always need to keep

f(b) < f(a) and f(b) < f(c)
to ensure we have at least a minimum in
the interval.

o\ j ® Initial bracket (a,b,c)

& If |b-c|>]a-b|, find a new test point
d in [b,c]

W If f(b) < f(d), keep b as the
current best estimation of the
minimum point.

W Update the bracket accordingly:
c=d

Go to the next update

W Go to the next update

Z\ | 2>
B D

A QUICK IMPLEMENTATION 7.

def f(x):

return (x-0.5)*%(x-0.5)*%(x-10.)*(x-10.) < A function with 2 obvious
FRAC = 0.38197 < Magic number! minimal points
a, ¢c =0.0, 2.0

fa, fc = f(a), f(c)
b = a+(c—a)*xFRAC
fb = f(b)

for step in range(150):

if abs(a-b)=abs(c-b): d
else: d
fd = f(d)

print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5)))
if abs(b-d)<1E-14: break

b+(a-b)*FRAC < Inserta new testing point,
b+(c—-b)*xFRAC between either (a,b) or (b,c)

N

1t fd<fb:

b, d — d, b V= .

b, fd = fd, fb exchange b and d, keep b as the best solution as always
if (d-b)x(a-b)>0: a, fa = d, fd
else: c, fc =d, fd

| 1205-example-06.py
[\\] 26
—y >

THE RESULTS

Terminal output:

0,
10,
20,
30,
40,
50,

60,
61,
62,
63,
64,
65,
66,

root
root
root
root
root
root

root
root
root
root
root
root
root

1.2360778381999999,
0.4946110292293492,
0.4999668808722842,
0.4999995815191064,
0.5000000029995387,
0.4999999999885979,

0.4999999999997671,
0.4999999999999878,
0.5000000000000400,
0.4999999999999556,
0.5000000000000078,
0.5000000000000201,
0.5000000000000001,

diff
diff
diff
diff
diff
diff

diff
diff
diff
diff
diff
diff
diff

0.7360778381999999
0.0053889707706508
0.0000331191277158
0.0000004184808936
0.0000000029995387
0.0000000000114021

0.0000000000002329
0.0000000000000122
0.0000000000000400
0.0000000000000444
0.0000000000000078
0.0000000000000201
0.0000000000000001

27

WHY 0.3819/¢

m Let's look at the configuration:

m Every time, we could shrink the bracket
from 1 to (w+z) or (1-w)

m In order to avoid the worst case, let's
simply force them to be the same:

w+z=1—w 4/\ ?
® Usually it would be the optimal if we Thl en ’
preserve the same “shrinking rate”: 3 — \/5
S W= N 0.38197

1 —w

Z\ 28
B P

WHY 0.381972 (II)

® Actually, this is nothing but the golden ratio:

FRONT VIEW OF THE NEPTUNE TEMPLE IN PAESTUM

A Greek temple in Doric style of the 6th century B.C
(The chicfstress of the gable shows the proportion of the

gokden mean.)

FRONTALANSICHT DES NEPTUNSTEMPELS IN PAESTUM
Griechischer Tempel im donischen Sul aus dem 6, Jh, v, Chr,
(Das Schwergewicht des Giebels weist das goldene Schniue-

verhilmis auf)

STATUE OF DORYPHORUS (Spear bearer)
Copy after the bronze original by Polycletus.
(In classical times it was known as an n:nurlxmc.l repre-
sentation of the perfect athletic body.)

- National Muscum, Naples

STATUE DES DORYPHORUS (Speertriger)
Kopic nach dem Bronze-()ngm.ll von l'-\l}'n;!«'!
(War im Altertum als maBigebende Darstellung des durch-
gebildeten Korpers bekannt.)

— Natonalmuseum Neapel

=)

e

29

WHY 0381972 () =

® The nominal golden section is derived from

b
6—=210 ¢ 161803
a b
1
And 1— 2~ 0.38197

So this minimum finding
method Is called
Golden Section Search.

atb _a

—_— =¢=1,61803

——— —————

My comments: unfortunately I'm not able to prove this is the best ratio for a generic
I D minimum finding; but it's not a bad number in principle.

A"“ 30
>

PARABOLIC \NTERDOLAT\ON:M
BRENT'S METHOD &

®m As we has shown in the previous half of this lecture, the pafabolié ‘
interpolation (the Brent's method) shows a good solution of
efficiency for 1D root finding.

m We are also able to do the same thing here:

Suppose we have three points: (x,y) =(a, f.), (b, fv), (¢, f.)

The minimum value of the function f(x) is located at

d—b— (b_a)z[fb_fc]_(b_c)2[fb_fa]

1
2 (b=a)lfs—fl ==)lfp— fa
/ Updating term for next iteration

Current best solution

You may try to derive this formula by yourself!

‘[\ | 3!
T P

EXAMPLE CODE

FRAC = 0.38197
a, ¢c =0.0, 2.0
fa, fc = f(a), f(c)
b = a+(c—a)*xFRAC
fb = f(b)
for step in range(150):
P = (b-a)x(b-a)x(fb-fc) -
Q = (b-a)*x(fb-fc) - (b-c)x(fb
d =Db - 0.5%P/Q
if (d-a)*x(d-c)>0.:
if abs(a-b)=abs(c-b): d
else: d
= f(d)

print('Step: %2d, root
if abs(b-d)<1E-14: break

(b-)

= %.16f, diff =

(b—c)x(fb-fa)

fa) « Estimate d with the
formula given above.

B &2 ggiggﬁg < Fail-safe protection

%.16f' % (step,d,abs(d-0.5)))

1T fd<fb:
b, d =d, b <« keep b as the best solution as always
fb, fd = fd, fb P /
, if (d-b)*x(a-b)>0: a, fa = d, fd
c, fc = d, fd

/ 1205-example-07.py (partial)

THE OUTPUTS

Surely the converging speed is much faster than the
simple golden section searches:

Step:
Step:
Step:
Step:
Step:

-

-

- -

B W= O

-

10,

21,
22,

root
root
root
root
root

root

root
root
root

0.5645411768827963,
0.5151073153720723,
0.5038341068383387,
0.5009203969723207,
0.5002316050692824,

0.5000000516190403,

0.5000000000000426,
0.5000000000000105,
0.5000000000000026,

diff
diff
diff
diff
diff

diff

diff
diff
diff

0.0645411768827963
0.0151073153720723
0.0038341068383387
0.0009203969723207
0.0002316050692824

0.0000000516190403

0.0000000000000426
0.0000000000000105
0.0000000000000026

You may notice that, finding the minimum I1s more
difficult than finding the root!

33

MINIMUM FINDING WITH
DERIVATIVES

m This is pretty tricky: if you know the exact form of the first
derivative, then a simply root finding code can already give you
the maximum and minimum points.

m If we just want to apply the Newton's method, we need to know
the exact form of second derivative.

Next best root is given by d = b

/')
)

Next best minimum/maximum is given by d = b

EXAMPLE CODE

def
def

FRAC
a, C
fa,
b =

for

fb =

fp(x):

¥et?r? 2.%(x-0.5)*%(x-10.)*(x-10.)+2.%(x-0.5)*%(x-0.5)*(x-10.)
pp(x):

return 2.%(x-10.)*(x-10.)+8.%(x-0.5)*(x-10.)+2.*%(x-0.5)*(x-0.5)

0.38197
5 2 22a§:0f (c) < Again, the same initial bracket!
a+(c—a)*FRAC

f(b)

step in range(150):
delta = —fp(b)/fpp(b)
d = b + delta < update b,d according to Newton’s method

if (d-a)*(d-c)>0.:
if abs(a-b)>abs(c-b): d
else: d

fd = f(d)
print('Step: %2d, root = %.16f, diff = %.16f' % (step,d,abs(d-0.5)))
if abs(b-d)<1E-14: break

b+(a-b)*FRAC
b+(c—b)*FRAC

< Fail-safe protection

\0

b =d " 1205-example-08.py (partial)

35

THE PERFORMANCE

The converging speed is VERY GOOD. We need only~5 steps
instead of 23 or 6x iterations. The second derivative is required!

Step: 0, root = 0.4747183508530082, diff = 0.0252816491469918
Step: 1, root = 0.4998006350485492, diff = 0.0001993649514508
Step: 2, root = 0.4999999874497394, diff = 0.0000000125502606
Step: 3, root = 0.4999999999999999, diff = 0.0000000000000001
Step: 4, root = 0.5000000000000000, diff = 0.0000000000000000
/ I205-examp|e-08.py (output)

Alternatively, one can adopt Brent's method for root finding on
first derivate: (Well, it's not too bad at all!)

Step: 0, root = 0.4358830239633310, diff = 0.0641169760366690
Step: 1, root = 0.5013516961302908, diff = 0.0013516961302908
Step: 2, root = 0.4999956151890250, diff = 0.0000043848109750
Step: 3, root = 0.5000000000658166, diff = 0.0000000000658166
Step: 4, root = 0.5000000000000000, diff = 0.0000000000000000
Step: 5, root = 0.5000000000000000, diff = 0.0000000000000000
" 1205-example-08a.py (output)

36

INTERMISSION

m Try to use the SciPy implementation of Brent’s method,
scipy.optimize.brentqg() to solve the same problem in
1205-example-02.py and see what you get?

® The golden section search — what will happen if you do not use
the “golden” ratio but a whatever number, such as 0.5? Is it better
or worse in terms of converging speed?

MULTIDIMENSIONAL
MINIMIZATION (COMM

[f we want to find the minimum point in multi-dimensional space,
it's much harder than our those 1D examples given above.

Many numerical algorithms have been developed in order to find
the minimum point for various problems.
(or, the best algorithm could be question dependent!)

Some named methods: Downhill method, Conjugate gradient,
Steepest Descent, Simplex method, Quasi-Newton method, etc...

Given the complexity of those named algorithms (in particular
many of methods require gradient calculation), we will not discuss how
to write the code by ourselves, instead — just going to use

the standard tools in SciPy directly!

38

BACK TO SCIPY

® The generic minimizer scipy.optimize.minimize() is shown

below:

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize. minimize.html#scipy.optimize. minimize

Scipy.org SciPy v1.0.0 Reference Guide | Optimization and root finding (scipy.optimize) M'

scipy.optimize.minimize Previous topic
L. Optimization and root fin
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, (scipy.optinize)
constraints=(), tol=None, callback=None, options=None) [source] _
Next topic

Minimization of scalar function of one or more variables.

. scipy.optimize.minimize_
In general, the optimization problems are of the form:

minimize f(x) subject to

Let's see a super simple example for
calling this tool!

g i(x) >=0, i=1,...,m
r

h j(x) = j=1,...,p

where x is a vector of one or more variables. g_i(x) are the inequality constraints. h_j (x) are the equality
constrains.

Optionally, the lower and upper bounds for each element in x can also be specified using the bounds argument.

Parameters: fun :callable

The objective function to be minimized. Must be in the form £(x, *args). The optimizing
argument, x, is a 1-D array of points, and args is a tuple of any additional fixed parame-
ters needed to completely specify the function.

39

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#

ONE LINE TO FIND THE
MINIMUM

B An example code for calling the default minimizer (“BFGS”= a
quasi-Newton method by Broyden-Fletcher-Goldfarb-Shanno).

import numpy as np
import scipy.optimize as opt

def f(x): Jl' A 3D function with obvious minimal point of (1,2,3)
return (x[0]1-1.)%kx2+(x[1]-2.)%*%2+(x[2]-3.)*x*2

X_init = np.array([0.5,0.5,0.5]) < initial values

opt.minimize(f,x_init)

res

1T res.success:
= | - |
print('The resulting vector:', res.x) " 1205-example-09.py

The resulting vector:
[1. 1.99999991 3.00000009] 1205-example-09.py (outpu

[‘\] 40
.\\— _)

A PRACTICAL EXAMPLE:
| EAST-SQUARE (x2) FIT

® The best results can be obtained by minimizing a x2 value for
N independent measurements:

2 _ g: (fi — Ni)Q fi eXPQC.tiS value of the model
X = u;: ith measurement

oi: uncertainty of i» measurement

Keeping updating those parameters
(@,B,7,...) until the best (smallest)
x2 value is reached.

fi :f(xMOéaBa’%)

41

LET'S GET SOME REAL
DATA POINTS

® One can start with storing the data as numpy arrays and make a
simple plot with error bar:

import numpy as np
import matplotlib.pyplot as plt

Xmin, xmax, Xbinwidth = 100., 170., 2.
vX = np. linspace(xmin+xbinwidth/2,xmax—xbinwidth/2,35) < x axis
vy = np.array
[712141413191 81 1, 61 618; 16; 361 2®r 81 618; 614171 = aniS:SimPIe gf
4,19,5,6,1,4,3,4,4,6,2,6,9,5,8],dtype="float64"') counting events in bin
vyerr = vy%x*0.5 < assuming Poisson standard deviation

plt.plot([xmin, xmax],[0.,0.],c="black', lw=2)
plt.errorbar(vx, vy, vyerr, c='blue', fmt = 'o0')
plt.grid()

plt.show()

| " 1205-example-10.py
— >

LET'S GET SOME REAL
DATA POINTS (II)

This is the output — nothing but
the (in)famous Higgs boson.

40 -
0 one of the
events here

30 ~

|
g T et o1

= .

O_

MODEL SETUP .2

In order to perform the fit, one needs to construct a model that can ‘.
describe the data. Here we simple introduce a 2nd order
polynomial for the background + a Gaussian signal peak.

r)=co+cr-x+cyx”
flz) =co+ SEAN

def model(x, norm, mean, sigma, c@, cl,]|c2):

Xp = (x=xmin)/(xmax—xmin)
polynomial = c@ + clxkxp + C2%Xp*k*2

gaussian = normkxbinwidth/(2.*np.pi)**x0.5/sigma * \
np.exp(—0.5%((x—mean)/sigma)*x*2)

return polynomial + gaussian

1205-example-10a.py (partial)

N - Ax (- p)?
= ex
P 207

g(x) Joro _ _

44

Ax: bin width, required for
the normalization

5
)

FITTING CORE & PLOTTING 4

J
Vi
A
N

2 B
2 Z (fi — i) Calculate x2 value for a given parameter

o2) set, after skipping the single zero entry bin.

7 1

def fcn(p): <
expt = model(vx,pl0],pl1],pl2],p[3],pl4],p[5])
delta = (vy-expt)/vyerr
return (deltax*2).sum()

p_init = np.array([70.,125.,2.,4.,0.,0.1)
r = opt.minimize(fcn,p_init)

if r.success:
print('N(Higgs)
print('M(Higgs)
print('chi”2/ndf

o 1f r.x[0]) ndf = N(data points)
%.1f GeV' % r.x[1]) B e eters)
%. 2T x)/(len(vy)-len(r.x))))

/ partial |10-example-10a.py

N(Higgs) = 69.8 events
M(Higgs) = 125.2 GeV
| |chi”2/ndf = 1.57 < X2/ number of degrees of freedom ~ | means a good fit!

ﬂ‘\] »
- »

(1)

Plotting — overlapping the
fitting model on top of the 301
data points.

40

20 A

Generally you still have to
judge/confirm the quality . +
of fit by plotting. : +

1f r.success:
cXx = np.linspace(xmin,xmax,500)
cy = model(cx,r.x[0],r.x[1],r.x[2],r.x[3]1,r.x[4],r.x[5])
cy_bkg = model(cx,0.,r.x[1],r.x[2],r.x[3],r.x[4],r.x[5])

: : I background curve is obtaindd by
plt.plot(cx, cy, c='red"’, lw=2) setting the Gaussian norm to be 0

plt.plot(cx, cy_bkg, c='red',6 w=2,1ls="'—
" 1205-example-10a.py (partial)

46

ALTERNATIVE FITTING
CODE

® Actually in scipy, there is a dedicated least-square fitting package,
named curve_fit(). It also provides an estimation of fitting errors.

p_init = np.array([70.,125.,2.,4.,0.,0.])
rx,rcov = opt.curve_fit(model,vx,vy,p_init,vyerr)

NG x2
17 mmeemy e e o i) I No needs of calculating x2 by ourself.

print('N(Higgs) = %.1f +— %.1f events
print('M(Higgs) = %.1f +— %

CX
cy del(cx, rx[0],rx[1], rx[2] rx[31,rx[4],rx[5])
cy_bkg = model(cx,0. ,rx[1] rx[2] rx[3] rx[4] rx[5])

% (rx[0],rcov([0,0]*x0.5))
.1f GeV' % (rx[1],rcov[1,1]*x0.5))

. . 4l square-root of the diag
np. linspace(xmin, xmax,500) term is the uncertainty
mo

/ 1205-example- [0b.py (partial)

N(Higgs) 69.8 +- 12.4 events
M(Higgs) 125.2 +- 0.4 GeV

— >

onal

COMMENTS

m Surely such a simple x? fitisnot ~ _ - o mowen |
very professional. The real fitto & | ¢ Data |
the Higgs mass peak is much 5 F J = z
more difficult than just few 8 s0- —PAE
lines. 40

® But this is a very good 30
demonstration in any case! 200

m We will come back to this e
subject (statistical analysis, RGN

<y . .. 70 80 90 100 110 120 130 140 150 160 170
fitting, and modeling) again in a m, (GeV)

later lecture.

Z\] 8
—y >

This is the real analysis plot!

FYOUR FUNCTION IS NOT_#7 7/

/

SO SMOOTH... A=

The previous example works pretty well with the generic
minimizer from scipy since the function fcn() is smooth, hence the
gradients can be calculated with a finite step method.

[f the function in the minimization is not so smooth (for example,
involves event counting), you may find the tool does not work for
you out-of-box!

In this case a different method has to be adopted. Here we are
going to introduce an interesting method: Genetic Algorithm to
resolve such a problem.

In principle a brute-force Grid Search always works up to some
extent, although it could be far from optimal and is very slow...

49

AN EXAMPLE PROBLEM -

® Suppose you have a set of data,
1205-example-1 1.py (output) scattered as shown in the figure.

> | m Can you find a rectangular box which
contains maximal red dots (signal),
minimal black dots (background)?

One can define a simple counting
significance by Naig

Z —
\/Nsig + kag

m So...all we need to do is to scan over

e all the possible values of
[[Xmin, Xmax, Ymin, Ymax], and look for

| latest significance value?

l\] >0

SOLVE IT IN A
BRUTE FORCE WAY...

® Before jump to our “fancy method”, let’s try to it in a
simple-minded brute force search in grid:
(note: scipy has a brute-search tool, you can try it too!)

import numpy as np
import matplotlib.pyplot as plt

np. random.seed(123456) < producing the scattered data

sig = np.random.randn(1000,2)%*0.5
bkg = np.vstack([np.random.randn(1000,2)%[0.4,0.6]1+[+1.,+1.],
np.random.randn(1000,2)%[0.7,0.3]+[-1.,-1.11])
def fcn(x):
nsig = ((sigl:,0]>x[0]) & (sigl:,0]l<x[1]) &
(sigl:,1]>x12]) & (sigl:,1]<x[3])).sum() <« counting # of signal
nbkg = ((bkgl:,0]>x[0]) & (bkgl:,0]<x[1]) &
(bkg[: . 11>x[2]) & (bkgl:.11<x[31)).sum() and # of background

if n51g+nbkg<1 return 0.

return nsig/(nsig+nbkg)**0.5
| 9 9 9 / 1205-example- | la.py (partial)

‘Z\ " return the significance |
—)

SOLVE IT IN A
BRUTE FORCE WAY.. (H)

vec = [(a,b,c,d) for a in np.arange(-2.,2.1,0
for b in np.arange(a,2.1,0. 1) & all candidate
for ¢ in np.arange(-2.,2.1,0.1) X XYY
for d in np.arange(c,Z 1,0.1)] [Peminy Kinax, Yy Y]
res = np.array([fcn(x) for x in vec])

best = res.argmax()
print('Resulting box =',vec[best],' fcn =',res[best])

" 1205-example-1 la.py (partial)

® This is what we can obtain easily,)
although it may take a while:

Resulting box
fcn = 25.6905

(-1.3, 0.6, -0.6, 1.0)

Even with a step size of 0.1 (between —0.2 and +0.2),
| it already takes 640,000 trials in this grid search...

o 52

GENETIC ALGORITHM

m Genetic algorithm (GA) is a search technique used in computing/
to find exact or approximate solutions to optimization and search
problems. The algorithms use the techniques inspired by
evolutionary biology such as inheritance, mutation, selection, and

crossover.

B GA can be used to find minimum or maximum of a function, but
this function can be highly non-linear /non-smooth in a multi-
dimensional space.

m Typical requirements:

— A genetic representation of the
solution domain;

— A fitness function to evaluate the
solution domain.

[\ 3 >3
.\\- -)

GENETIC ALGORITHM (4

m First let's encoding the numbers (boundaries of the rectangular
box) into a chromosome or gene:

RTINS W _ | Lotic representation of

/ I \\ the solufion domain

(Xmin, Xmax), (Ymin, Ymax)

B Then generate a set of chromosomes with random numbers as the
first/initial generation:

A group of population

GENETIC ALGORITHM ()4

m Let's generate the next generations by CROSSOVER:

EEEE EEEEEEEE B B I EnE) EEEEEEEREE
B
EEEREE | EEEE B EE
#m And with MUTATION:
e

® Now we get a bigger group of population, then let's drop some of
chromosomes according to their FITNESS and reduce the number

of genes back to a constant population. Take the counting

DR RN Fitness = 1.424 v significance as the
Fifness function:
Fitness = 0.874 X . Ngig

- \/Nsig + kag

55

/)
7
7 ”.

GENETIC ALGORITHM (V)]

B The EVOLUTION:
What we need to do is just re-do the updating processes:

crossover, mutation, and kills the bad genes until the population is
converged at some point.

Then we just need to pick up the best chromosome as the
representation of the best solution to our problem.

[\ °6
B P

A SIMPLE IMPLEMENTATION _#

def crossover(x,y):
return [np.random.choice([v,w]) for v,w in zip(x,y)]
def mutation(x):
return [v+np.random.randn()*0.2 < routines for
if np.random.rand()<0.2 else v for v in x] crossover & muta

population = 100 < size of population
chromo = [np.random.rand(4)*4.-2. for i in range(population)]
]:;:Engzrsl _in [Itgplg())e(z 1;8;:)(in chromo] I initial chromosomes (all random)
for idx in range(population):
pick = np.random.randint(@,population,2)
x = crossover(chromo[pick[0]],chromo[pick[1]]
X = mutation(x)
chromo.append(x)
fitness.append(fcn(x))

) < pick up parents

rank = (-np.array(fitness)).argsort() [:population] < drop low rank ones
chromo = [chromo[i] for i in rank]

fitness = [fitness[i] for i in rank]

print('gen:',gen+1, 'best chromo=',chromo[0@], ' 'fitness=",fitness[0])

if np.array(fitness).std()/np.array(fitness).mean()<1E-3: break
I stop the evolution loop if the whole population is converged./ [205-example-1 Ib.py (partal)

P

RESULTS WITH GA

m It takes only O(30) generations to converge

(ie. all the chromosomes end up with very similar
fitness values).

® The code runs quick since it only takes ~3000

brute-force search!

trials, much more efficient comparing to the

-
1

|
[
'

|
~
I

S WN =

:.16
:.26

= 27
: 28

best
best
best
best
best
best
best
best

chromo
chromo
chromo
chromo

chromo =

chromo

chromo
chromo

.868,
.452,
.452,
.173,

.173,
.173,

.252,
227,

S [~ I B I

[~ I)

.864,
.719,
.719,
.706,

.644,
.616,

.613,
.616,

.780,
.504,
.504,
.701,

. 609,
.628,

.628,
.623,

R

=

([~ I)

. 046]
.246]
. 246]
.060]

.060
. 996]

. 996
. 996]

fitness
fitness
fitness
fitness

fitness =

fitness

fitness
fitness

25.

25.
25.

.4350
.8902
.8902
.3192

.6418

9141

9289
9330

58

COMMENTS 5/

Again, finding minimum / maximum in multiple-dim‘{é.n
space is not easy. The best algorithm depends on the prob

If the function to be minimized is smooth, take the generic
minimizer (scipy or others are generally fine!);

[f the function is highly non-linear / non-smooth / broken, the
grid search or GA might work better;

Although the grid search will be extremely slow and not-so-
precise when # of parameters goes large;

GA might work better in some cases, but it does not promise
to give you the best solution (but acceptable).

There are other algorithms can do similar things, left for your
own studies!

Training neural network is also a kind of heavy minimization over
>10K parameters (dimensions), to be discussed in the later lecture.

;Z\ >?

HANDS-ON SESSION

Practice 1:

Using the root function routine (Newton’s method) in SciPy,
implement your own arcsine and arccosine function. Please
compare your own implementations and the standard routines for
the following target values:

sin—1(0.1), sin—1(0.5), sin—1(0.9), sin—1(1.0) and
cos1(0.1), cos1(0.5), cos~1(0.9), cos~1(1.0)

The trick: simply find the root of sin(x) - R = 0 and cos(x) - R =0

60

HANDS-ON SESSION

m Practice 2:

Produce a fit to the following data points with 2nd / 3rd / 4th [5th
order polynomial, and decide which one gives you the best quality
of fit, by judging the x2 per number of degrees of freedom?

vy = np.array/(

[0.981, 0.930, 0.900,
0.9806, 1.144, 1.188,
1.427, 1.540, 1.4206,

vyerr = np.array

[0.044, 0.042, 0.037,
0.045, 0.041, 0.041,
0.050, 0.055, 0.052,

(SRS RO

0.889,
1.
1.203,

309,

.037,
.044,
.074,

OO

OO0

Xxmin, xmax, xbinwidth = 0.,1.,0.05
vx = np.linspace(0.,1.,21)

.978,
. 259,

.843,

. 043,
. 043,
. 060,

SR KR

(SRR

.053,
. 348,
.570,

. 040,
.043,
. 068,

SRS

(S RO RO

. 000,
. 435,
.060])

. 038,
. 041,
.0821])

/ 1205-practice-02.py

61

