2XD7 XD
INTRODUCTIONTO A

NUMERICAL ANALYSIS

L o ™

— \\\ !
Lecture 2-6:

Solving ordinary differential equations

Kal-Feng Chen

National Taiwan University }\

WORK OF “PHYSICISTS”

Solving the differential equations is probably one of your most
“ordinary” work when you study the classical mechanics?

Many differential equations in nature cannot be solved analytically
easily; however, in many of the cases, a numeric approximation to
the solution is often good enough to solve the problem. You will
see several examples today.

In this lecture we will discuss the numerical methods for finding
numerical approximations to the solutions of ordinary differential
equations, as well as how to demonstrate the “motions” with an
animation in matplotlib.

WORK OF “PHYSICISTS” ().

m Let’s get back to our “lovely” F=ma equations!

» N 2 2
}%_\ s, & LSy
A

4770d

-
. &

A

THE BASIS:
A BRAINLESS EXAMPLE

Let's try to solve such a (mostly) trivial differential equation:

@ — f(y,t) = with the initial condition:

You should know the obvious solution is — i = exp(f)

@ — f(y,1) Actually, this I1s the general form of any
9% first-order ordinary differential equation.

dt
In general, It can be very complicated, but it's still
a Ist order ODE, eg.

_:f(y,t):yS-tQ sin(t +y) + vVt +y

THE NUMERICAL
SOLUTION

® Here are the minimal algorithm — integrate the differential
equation by one step in t:

dy

Y(tny1) = y(tn)
h

:f(yatn) — Yn+1 %yn+h'f(ynatn)

next stepI Icurrent step

For our trivial example: Y y W Ypy1 X Yn + o Yn

dt

This is the classical Euler algorithm (method)

!
J

l\“ >

FULER ALGORITHM

® A more graphical explanation is as like this:

- Yn+1 X Y+ ho f(ynatn)

)

The precision of this Euler
algorithm is only up to O(h)
since:

For every step the precision is of
O(h?); after N~O(| /h) steps the
precision is O(h).

FULER ALGORITHM (1)

m Let’s prepare a simple code to see how it works:

import math
def f(t,y): returny

t, vy = 0., 1. < Initial conditions (t=0,y = |)
h = 0.001 < steppingint

while t<1.:
k1 = f(t, y) < the given f(y,t) function
y += hxkl
t +=h

y_exact = math.exp(t)
print('Euler method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact)))

1206-example-01.py

Euler method: 2.7169239322358960,
exact: 2.7182818284590469,
| diff: 0.0013578962231509 <= Indeed the precision is of O(h)

Zl\k 3 ’

SECOND ORDER
RUNGE-KUTTA METHOD

Surely one can introduce a similar trick of error reduction we have
played though out the latter half of the semester.

Here comes the Runge-Kutta algorithm for integrating differential
equations, which is based on a formal integration:

y(t) = / F(ty)dt

tnt1
Ynt+1 = Yn +/ f(t,y)dt
¢

mn

dy -

Expand f(t,y) in aTaylor series around (¢,y) = (tn—|—% ; yn+%)

d
F9) = Tty W)+ (=t y) - T(t44) + O

Something smells familiar?

SECOND ORDER
RUNGE-KUTTA METHOD (I

FE) = Fltns s)+ (= tuy) | (| O

Insert the expansion
into the integration:

Fati bnt1 tn41 df
/ f(t,y)dt:/ Fpy 1Yy 1)dt+/ (t = tuyy) |otfey)| dt + .
" t” b -

&
Linear (first order) term must be cancelled

It's just a number (slope)!

Insert the integral back:

tn41
[e f)
{

mn

. Yn+1 %yn+h'f(tn—|—%7yn—|—%) —l_O(hg)

If one knows the solution half-step in the future —
; the O(h?%) term can be cancelled. BUT HOW?

Z\] ?
—y >

SECOND ORDER
RUNGE-KUTTA METHOD (il &5

m The trick: use the Euler’s method to solve half-step first, starting: '
from the given initial conditions:

Yy Slope:
A f(yn—kévtn—l—%) h
: : =" tn—l—l = t —I— —
e 2 :
"x—n—l—l\ yn+1:yn+h F(tntssYnts)
7 < . Explicit formulae
kl — f(tnayn)
> 1 h h
kQ — f(tn + =, Yn + = - kl)

2 2
Yntl = Yn + h - ko + O(R?)

IMPLEMENTATION OF “RK2" ¥

® The coding is actually extremely simple:

t, y =0., 1.
h = 0.001 < Initial conditions and stepping (t =0,y = I,h = 0.001)

while t<l1

k1 = f(t, ¥) <« use Euler method to solve half-step
k2 = f(t+0.5%h, y+0.5%xhxkl)
y += hxk2 < full step jump RK2 solver

t +=h

y_exact = math.exp(t)
print('RK2 method: %.16f, exact: %.16f, diff: %.16f'

(y,y_exact,abs(y-y exact)))

\O

s \
1206-example-02.py

RK2 method: 2.7182813757517628, For every step the precision is of
exact: 2.7182818284590469, O(h3); after N steps the
| diff: 0.0000004527072841 precision is O(hz)

e |
Z\\ P

FOURTH ORDER
RUNGE-KUT TA

® The 4th order Runge-Kutta method provides an excellent balance
of power, precision, and programming simplicity. Using a similar
idea of the 2rd order version, one could have these formulae:

Basically the 4t order

ki = f(t'm yn) Runge-Kutta has a precision
h h of O(h°) at each step, an
ko = f(tn T 5 Yn T 9 kl) over all @(h4) precision.

h h
ks = f(tn + o Yn T 9 k2) Actually, the RK4 is a variation of

ks = f(tn + h,yn + h - k3) Simpson's method...

h
Yn+1 ~ Yn + 6 ' (kl + 2ko —|—2]€3—|—]€4) —|—O(h5)

‘[\ | 12
T P

m The RK4 routine is not too different from the previous RKZ

t, y=0., 1. = L . .
h = 0.001 The same initial conditions & stepping
while t<1
K1 = f (t, vy) RK4 solver
2 = f(t *h, *xhxk1 . .
23 = f g tig g*h §18 g*h*kZ; < Simply calculate kl~k4 in a sequepce
k4 = f(t+h, y+h*k3)

y += h/6. % (K1+2.%k2+2. xk3+kd) < Jump to the next step
h

y_exact = math.exp(t)
print('RK4 method: %.16f, exact: %.16f, diff: %.16T'
(y,y_exact,abs(y-y_exact)))

—
[l

\O

5\
1206-example-03.py

RK4 method: 2.7182818284590247,
exact: 2.7182818284590469,
diff: 0.0000000000000222 <=|Precision is of O(h*)!

Z\] 3
—y >

PRECISION
EVOLUTION

Let’s write a small
code to demonstrate
the “precision” of the
solution as it evolves.

You should be able to
see the
“accumulation” of
numerical errors.

vt,yl,vy2,vy4 = [1,11,11,1] < List for storing

t = 0.

the output

vyl = y2 = y4 = 1.
h = 0.001
while t<200.: < now we calculate up to t=200

k1l
y1

kK1
K2

y2
K1

I' Store the relative errors_~ el sy fea

f(t, yl)
hxk1

f(t, y2) RK2
f(t+0.5%h, y2+0.5%hxk1)
hxk?2

f(t, y4d) RK4
f(t+0.5%xh, y4+0.5%hxk1)
f(t+0.5%xh, y4+0.5%hxk2)
f(t+h, y4+hxk3)
h/6.%x(kl+2.%xk2+2.%xk3+k4)

N

nend (t)
opend (abs(yl-np.exp(t))/np.exp(t))
opend (abs(y2-np.exp(t))/np.exp(t))

opend (abs (y4-np.exp(t))/np.exp(t))

|4

v

PRECISION

EVOLUTION (I

® Just make a simple plot.

m The initial uncertainties are
of O(h), O(h2), and O(h?).

m After 200,000 steps or more,
the accumulated errors can

Euler

108

1070 |

10-12 |

R

RK2

RK4

be large. o
plt.plot(vt,vyl, lw=2,c="'Blue')
plt.plot(vt,vy2,lw=2,c="'Green")
plt.plot(vt,vy4, lw=2,c="Red"')
plt. yS(.:ale("log') I Draw the relative differences
plt.ylim(1E-16,0.2)
plt.show()

" 1206-example-03a.py (partial)

200

COMMENT:
ADAPTIVE STEPPING

If you check out the text books, they will tell you that
“Although no one algorithm will work for all possible cases,
the fourth order Runge-Kutta method with adaptive step
size has proved to be robust and capable of industrial
strength work.”

[t is very similar to what people usually introduced in the
numerical integration, by analyzing resulting errors and
then adjust the step size in the routine.

But how could we estimate the error in the ODE solving? In
principle we could adopt a typical idea of “reduce the step
size by a factor of two”.

COMMENT:
ADAPTIVE STEPPING (Il

® Look at the RK4 formulae:

Using the same step sizeh Yn+1 = Yn T ... T (h)°¢ 4 O(
but move forward twice: ¢ o oy, ... + 2(h)®

Using the step size 2h ;o - .
but move forward once: Ynt2 B Yn + ...+ (2h)°¢d + O(h

m If we compare the two cases:

A = ypio— Ynt2 = 30(h)°d + O(R°)

m Although this idea works, but it's not really recommended /easy to
carry it out directly. And when we estimate this error, we already
triple the steps...

[\ 7
,\\- -)

ADAPTIVE STEPPING:
ERROR ESTIMATION

® Another way of error estimation: move to 5th order Runge-Kutta /

method, and compare the difference between 4th and 5t results.

kl =h - f(tnayn)
ko =h- f(t, + azh,yy, + ba1k1)

General RK5
formulae

ke = h- f(tn +ach,yn + be1k1 + ... + besks)

5th
yn—l—l
4th
yn—l—l

[A)

order

order

— C4k4 -+ C5]€5 + 66k6 + O(h6) >

- ciky 4 ko + chks 4 Ciky + ciks 4 ke + O(R°)

- c1k1 + coka + c3ks A
__ . 5*"order
A = yn—l—l o

compare these

4*P order -
T two equations

|18

ADAPTIVE STEPPING:
COEFFICIENTS

m RK45 Coefficients (Cash-Karp version):

Cash-Karp Parameters for Embedded Runga-Kutta Method

) (g b;; C; cr
_ 37 2825
‘I‘ ATR 276048
9 % % () ()
2 3 R 0 25() 18575
’ 10 10 40 621 48384
4 3 3) 6 125 13525

5 10 10 5 504 55206
- 11 70 35 277
: — = - —t— — 0
! ! 4 2 7 77 14336
6 7 1631 175 575 44275 253 512 1

S 55206 512 13824 110502 1006 1771 1

7= l 2 3 l 3

MPLEMENTATION OF “RK45*F/

® The code becomes somewhat “complex” now:

t, vy =0., 1.
h = 0.001
steps = 0
while t<1.:
while(True):
kK1 = f(t, vy) RK45 solver
k2 = f(t+1./5.%h, y+1./5.%hxkl)
k3 = f(t+3./10.xh, y+hx(3./40.%xkl + 9./40.%k2))
k4 = f(t+3./5.%xh, y+hx(3./10.%k1l - 9./10.%k2 + 6./5.%k3))
K5 = f(t+h,y+hx(-11./54.%xk1 + 5./2.%xk2 — 70./27.%xk3 +
35./27.%k4))
k6 = f(t+7./8.xh,y+h*(1631./55296.%k1l + 175./512.%xk2 +
575./13824.%xk3 + 44275./110592.%k4 + 253./4096.%k5))
yn = y+h*(37./378.%k1l + 250./621.%k3 + 125./594.%k4 + < 5th ord
512./1771.%k6)
yp = y+h*(2825./27648.%k1l + 18575./48384.%k3 + < 4th order
13525./55296.xk4 + 277./14336.%k5 + 1./4.%k6)
| / 1206-example-04.py (partial)

20

er

-

® Then one has to scale the steps according to the ERROR:

(CONT) p <

err = max(abs(yn-yp)/1E-14,0.01) Novrwalize the evvov +0 the
if err<l.: break desived precision;

§ accept 90 fov next Step.
hn = 0.9xhxerrxx—0.25 - _
if hn < h%0.1: hn = hxg.1 >h"King the step Size

h = hn dccovding to the evvov
}c/ :_zyﬂ enldvge the Step Size
steps += 1 fov the next itevation |RK4A5 method after 147 step
dccovding to the ervovr (t=1.0052500244037599) :
hn = 0.9%khkxerrxx—0.2 2.7325904017088232,
1T hn > hx5.: hn = hx5. exact: 2.7325904017088298,
h = hn diff: 0.0000000000000067

y_exact = math.exp(t)
print('RK45 method after %d step (t=%.16f): %.16f, exact: %.16f,

. |diff: %.16f' % (steps,t,y,y_exact,abs(y-y_exact)))

‘Z\ / 1206-example-04.py (partial)
_ 21
— >

PRECISION EVOLUTION

(AGAIN)

vt4,vy4 =
vt45,vy45

t, y=0., 1.
h =
while t<200.:

[]

[1,
=[], []

0.001

vt4.append(t)
vy4.append (abs(y-np.exp(t))/np.exp(t))
t, vy =0., 1.
h =
while t<200.:

0.001

vt45.append(t)
vy45.append (abs(y-np.exp(t))/np.exp(t))

RK4

RK45

10 144
10-13-;
10714 5
10-15-;

1016 |

! 1 ' '
5,| 7) 1 \ 7

plt.plot(vt4,vy4, lw=2,c="'Red")
plt.plot(vt45,vy45, lw=2,c="Brown')
plt.yscale('log"')

plt.ylim(1E-16,1E-9)

plt.show() / 1206-example-04a.py (partial)
- 22

P

® One can see the “RK45”
method w/ adaptive steps
further improves the
precision!

INTERMISSION

m It could be interesting to solve some other trivial differential
equations with the methods introduced above, for example:

ay _ _
a7
d
d—izcos(t)

m Try to modify the previous example code (1206-example-03a.py or
1206-example-04a.py) and see how the error accumulated along
with steps for a different differential equation.

‘[\ | 23
T P

A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM

F = ma mm RdQe sin 6
— mR—; = —mgsin
iTE I
d?0 ,
ﬁ — —E SmH

Solving 2nd order ODE =
Decompose into two
Ist order ODE:

do : g

— - ——— 1 xXxx’ I
g f(0,0,t) IE sin 6 (1)
do . -

= —a(0.0.t) =0 e (2

24

A LITTLE BIT OF PHYSICS: _#7
SIMPLE PENDULUM (I}

att=0:
0 = 0.99991 ~ 3.141278...

} =0
0 = 0.9999 n
Almost at the largest possible angle
(No small angle approximation!

; Not a “simple” pendulum)
g=9.38m/s? Standstill at the beginning,

, m = 1kg With a trial Initial condition

R=1m

In principle 1t should stand for a moment, and
start to falling down...

SOLVE FOR 2 ODE'S
TOGETHER

m, gb R=1., 9.8, 1.

t, h=20., 0.001 < Initial condition t = 0 sec, stepping = 0.001 sec.
y = np.array([np.pi*0.9999,0.]) < Initial 6 and &’
def f(tr Y) : 0]
theta = yl0] ~ . - 5
e Tant = i) mpTJt array contains 0 and 0
thetapp = —g/R¥np.sin(theta) < output array contains ©° and 6
return np.array([thetap, thetapp])
while t<8.:
for step in range(100): & solve for 100 steps (=0.1 sec)
kl — f(t; y)
y += hxkl < Euler method
t +=h
theta = yI[0]
thetap = yl[1]

print('At %.2f sec : (%+14.10f, %+14.10f)' % (t, theta, thetap))

1206-example-05.py
Z\ 3 26

SOLVE FOR 2 ODE'S
TOGETHER (I

The terminal
output:

Works, but not so
straight forward...

L et’s Introduce some
animations to
demonstrate the motion!

!
|

i

0]

SecC
SeC
SeC
SecC
SecC

SecC

SeC

SecC

SeC

SeC

SeC

SeC

~~ ~~ ~~ ~~ ~~ ~~ ~~ N NN NN

+3.1412631358,
+3.1412152508,
+3.1411301423,
+3.1409994419,
+3.1408102869,

+3.1380085436,
+3.1245199136,
+3.0601357015,
+2.7540224966,
+1.4037054845,
-2.7787118486,
-3.3781806892,

~0.0003127772)
-0.0006561363)
~0.0010639557)
~0.0015764466)
~0.0022441174)

~0.0111772696)
~0.0534365650)
~0.2549284063)
~1.2057243644)
-4.7826081916)
~1.1997994809)
~0.8411792354)

R wait, 0<—T1!?

27

SIMPLE ANIMATION

m It is easy to create animations with matplotlib. It is useful to
demonstrate some of the results that suppose to “move” as a
function of time!

® Here are a very simple example code to show how it works!

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation < import animation paclage

fig = plt.figure(figsize=(6,6), dpi=80)

ax = plt.axes(xlim=(-1.,+1.), ylim=(-1.,+1.))<: initial figure/axis

curve, = ax.plot([], []l, ww=2, color=‘red")
I initial empty object(s) " 1206-example-06.py (partial)

You can also use vpython to create the animations!
‘Z\ (I know some of you already learned it before!)
N »

28

SIMPLE ANIMATION (1I) -

m The “core ” part of the code: output:

This is the

def init():

T
X

y

plt.show()

curve.set_data([], []) < initial frame,all set to empty
return curve, < have to return a tuple

def animate(i):

= np. linspace(0.,np.pix2.,400)
np.cos(t*6.)*np.cos(t+2.*np.pi*xi/360.)
np.cos(tx6.)*np.sin(t+2.xnp.pi*xi/360.)

curve.set_data(x, y)
return curve,

anim = animation.FuncAnimation(fig, animate, init_func=init,

R update the data for frame index = i
(i is not an essential piece, it’s just a counter)

frames=360, interval=40)
Initial an animation of total 360 frame R 1

with 40 mini-sec wait interval (=25 FPS) N — e —

A&s »

29

SOLVING ODE X
ANIMATION

m “Merge” two previous codes as following:

fig = plt.figure(figsize=(6,6), dpi=80)
= plt.axes(xlim=(-1.2,+1.2), ylim=(-1.2,+1.2))

stick, = ax.plot([], I[I, 1w=2, color="'black")
ball, = ax.plot([], [], 'ro', ms=10)
text = ax. text(@ 1.1,'"', fontsize = 16, color='black',

ha="' center , Va= center) R initial empty objects:

m, g, R=1., 9.8, 1.
t, h =0., 0.001
y = np.array([np.pi*x0.9999,0.]1) < Initial 6 and ©’

def f(t,y):
theta = yl[0@] < function for calculating ©* and 0
thetap = yI[1]
thetapp = —-g/R*np.sin(theta)

, return np.array([thetap, thetapp])

ﬁ‘\ | 30
- >

" 1206-example-07.py (partial)

SOLVING ODE X
ANIMATION (11

B Core animation + solving ODE:

utextn/H\

def animate(i):

E = 9.7999995163882581

T“ball”

S“stick” | |

global t,y < force tandy to be global variables = -7
for step in range(40): < solve 40 steps 1

k1 =
y +=
t 4=

theta
thetap

f(t, y)
hxk1
h

y[0]
y[1]

bx = np.sin(theta)

by = —-np.cos(theta)
ball.set_data(bx, by)
stick.set _data([0.,bx],

E = mxgxby
text.set(text="'E =

(0.04 sec per frame) o 05 oo o5 1o

[0.,by]) < plot the “ball” and “stick”

+ 0. 5*m*(R*t?etap)**2 < show the total energy
%.16T" %

E)

return stick, ball, text

anim =

frames=10, interval=40)

animation.FuncAnimation(fig, animate, init_func=init,
/ 1206-example-07.py (partial)

o1

vy

o3

vy

DEMO TIME!

m It moves! But you will find the solver does not work too g
almost immediately; the energy is not even conserved!

E =9.79900995187532940

t = 0.5 sec

-10 -2% on

E=98007892835331794

Sy

t = 3.0 sec

——a

-10 -2 on

o3

oy

o3

vy

E =9.793000521125803%

t= 1.0 sec

-10

-3 on

"

E=98736967925118580

——
e

t = 3.5 sec

-10

on

o3

vy

o3

vy

E =9.79909952352776G0

t= 1.5 sec
E=9831564857331204:
\
\\
\
\
\

t = 4.0 sec

-10

on

32

o3

vy

o3

vy

E = 9.7920005€73044698

r
|

t = 2.0 sec
E=983118T79313408877
t = 4.5 sec

o3

vy

o3

vy

E =9.8200203033B46331

;

/
t = 2.5 sec
E=98307961C052246256
r
/
/
|
/
/
/
t = 5.0 sec

THAT'S WHY WE NEED A
BET TER ODE SOLVER..

One can simply replace the core part of the code to “upgrade” the
ODE solutions.

for step in range(40):
kl — f(t; Y)
k2 = f(t+0.5%h, y+0.5%hxkl) ‘BQKZ

y += hxk2
C sl " 1206-example-07a.py (partial)
for step in range(40):
K1 = f(t, vy)
k2 = f(t+0.5%h, y+0.5%hxk1)
RBKA = (3 = f(t+0.5%h, y+0.5xhxk2)
k4 = f(t+h, y+hxk3)
This RK4 routine will not PO ELKERE SHIEH2 HIS +ed)
easlly break the total energy B " 1206-example-07b.py (partial)

‘Z\ cap easily at least. .

USING THE ODE SOLVER
FROM SCIPY -

m The ODE solver under SciPy is also available in scipy:. mtegr
module, together with the numerical integration tools:

@ SCi Py.OI'g e ENTHOUGHT

Integration and ODEs (scipy.integrate)

|

Solving initial value problems for ODE systems

The sclvers are implemented as individual classes which can be used directly (low-leve usage) or threcugh a cenvenience function.

solve_ivp(fun, t_span, yJ[methoc, t_eval, ...]) Solve an initial value prodlem for a system of ODEs.
RK23(fun, t0, y0, t_bound[max_step, rtol, ..]) Explicit Runge-Kut:a method of order 3(2).
RK45(fun, tJ, y0, t_bound[max_step, rtol, ...]) Explicit Runge-Kut:a method of order 5(4).

http://docs.scipy.org/doc/scipy/reference/integrate.ntml#module-scipyintegrate

34

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

USING THE ODE SOLVER
FROM SCIPY (Il

import numpy as np
from scipy.integrate import solve_1ivp < import the routine

m, g, R=1., 9.8, 1.

| print ('At %.2f sec : (%+14.10f, %+14.10f)' % (t, theta, thetap))

‘Z\35 ya 1206-example-08.py
. _)

t = 0.
y = np.array([np.pi*0.9999,0.]) < now tandy are
def f(t,y): just initial conditions
:E_Eg%gp : z%%% < exactly the same f(t,y)
thetapp = —g/R*np.sin(theta)
return np.array([thetap, thetappl)
while t<8.:
sol = solve _ivp(f, [t, t+0.1], y) < solve to current time + 0.
y = sol.y[:,-1]
t = sol.t[-1]
theta = y[0]
thetap = yl[1]

1 sec

USING THE ODE SOLVER
FROM SCIPY (Il

]

0|

&
00000

.10
.20
.30
.40
.50

.00
.50
.00
.50
.00
.00
.00

secC
sec
sec
secC
secC

secC

secC

secC

secC

secC

secC

secC

~ ~~ ~~ ~~ ~~ ~~ ~~ N SN NN AN

.1412629744,
.1412148812,
.1411294629,
.1409982801,
.1408083714,

.1379909749,
.1243942321,
.0593354818,
.7492944690,
.3819060253,
.7713127817,
.1253649922,

~0.0003129294)
-0.0006567772)
~0.0010655165)
~0.0015795319)
-0.0022496097)

~0.0112320574)
~0.0538299284)
~0.2574312087)
~1.2202273084)
~4.8249634626)
-1.1525482114)
~0.0507902190)

36

It's working
smoothly!

The default
algorithm is RK45
(as we introduced
earlier, the error is
controlled assuming
4th order accuracy, but

steps are taken using a
5th formula).

Few other different
methods are also
available.

USING THE ODE SOLVER ¢/
FROM SCIPY (IV) g

g, R=1., 9.8, 1.

m’ !
m It's also pretty easy to |t = 0.
merge the ODE solver |Y = hp.array([np.pix0.9999,0.])
with animation. def f(t,y):
theta = yl[0]
thetap = ylI[1]
thetapp = —g/R*np.sin(theta)

return np.array([thetap,thetappl)
Replace the for-loop

with a single commend def animate(i):

global t, vy
///,sol = solve_ivp(f, [t, t+0.040]1, y)
call the integrator — y =sol.yl[:,-1]
t = sol.t[-1]
theta = yl[0]
, thetap = yl[1] " 1206-example-08a.py (partial

ﬂ‘\] 37
-

ANIMATION WITH
VPYTHON “

VPython is an easy tool to create 3D displays and animations.

[believe some of you are quite familiar with it already! So here we
will just introduce it briefly and connect it with scipy ODE solver
as a demonstration.

Installation of VPython:

In your terminal run this command, which will install
VPython 7 for your python environment:

> pip install vpython

Or if you are using Anaconda:

> conda install -c vpython vpython

38

ANIMATION WITH
VPYTHON (I

A minimal VPython example:

>>> from vpython import *
>>> scene = canvas(width=480, height=480)

>>> cube = box(pos=vector(0.,0.,0.))

and this should give you a cube shown in your browser. (Remark:
in old version of VPython it should show in a window!)

Zoom & rotate
the scene a little bit!

39

ANIMATION WITH
VPYTHON (Il

Now we shall make it animated!

>>> while True:
cube.rotate(angle=0.01)

rate(25.) < frequency = 25 : halt the computation for 1/25 sec

L

and this will give you a rotating cube, shown in your browser!

Now we can integrate VPython with our ODE
40 solutions and make a proper animation!

VPYTHON + SCIPY

import numpy as np
from vpython import *
from scipy.integrate import solve_1ivp

a “floor” box for showing
the ground in the scene

scene canvas(width=480, height=480) l

floor = box(pos=vector(0.,-1.1,0.), length=2.2, height=0.01,
width=1.2, opacity=0.2)

ball = sphere(radius=0.05, color=color.red)

rod = cylinder(pos=vector(0.,0.,0.),axis=vector(1,0,0),
radius=0.01, color=color.white)

txt = label(pos=vec(0,1.4,0), text="', line=False)

M all the VPython objects

m, g, R=1., 9.8, 1.

t = 0.

y = np.array([np.pi*0.9999,0.1)
def f(t,y):

| return np.array([thetap,thetappl)

[;\ 3 4l

" 1206-example-08b.py (partial)

VPYTHON + SCIPY (Il

The main ODE solving + animation loop — simply caléulat(
resulting theta and convert it to the coordination.

while True: € = 0.7960087006860547
sol = solve_ivp(f, [t, t+0.040], vy)

y sol.y[:,-1] M call the ODE solver /

t sol.t[-1]

theta
thetap

y[0]
y[1]
ball.pos.x = np.sin(theta)

ball.pos.y = —-np.cos(theta)
rod.axis = ball.pos

E = mkxgxball.pos.y + 0.5*«mx(Rxthetap)x*2
txt.text = 'E = %.16T"' % E

rate(1./0.040)

- I206-examp|e-08b.py (partial)

42

fac

INTERMISSION

® What will happen if you given a critical initial condition to the

preview simple pendulum example, e.g. 0 =7

0=0

® It could be fun if you can try to record the angle versus time (this

can be done by a small modification to 1206-example-08.py), and
make a plot. If you set the initial condition to a small angle (when
the small angle approximation still works), will you see if your
solution close to a sine/cosine function?

43

A SIMPLEVARIATIONWITH _£77
SPRING A7

m Replace the “stick” with a spring:

f=—k(R—-Rp) fmzf%%
: P A
i R = /22 4y fy=1f 2]
R0=15.Om i

k =100 N/m

(z,y) m=1kg

Coordinate (x,y) is used

—mgj instead of (R,0) here.

Need to solve 4 equations
v (X,Y,Vx,Vy) simultaneously

~ g = 9.8m/s?
- > 44

A SIMPLEVARIATIONWITH _#77

SPRING (Il

Expand the equations in order to prepare the required ODE

equations.

Input array: [x, y, vy, Vy]

Output array:
T = Uy
Y = Uy

X
Vy =— —k(R — RO)R—m
?@:—MR—R®§;

def

f(t,y):

bx, by = yl[0], yl[1]
vx, vy = yI[2]1, yI3]

R = (bxxx2+by**2)**x0.5

fs = —k*(R-R0Q)
ax fsxkbx/R/m
ay fsxby/R/m - g

\H/ OUtPUt vector
return np.array(I[vx,vy,ax,ayl)

" 1206-example-09.py (partial)

45

A SIMPLEVARIATIONWITH _£7

SPRING (Il

The animation part is
more-or-less the same as
the previous example:

'E = 3.91636868630008851

ball = sphere(...)
spring = helix(...)
txt = label(...)

while True:

sol = solve_ivp(f,[t,t+0.040],y)
y sol.y[:,-1]
t sol.t[-1]

bx, by
VX, VY 2],
(b
bXx
by
ball.pos

ball.pos.
ball.pos.
spring.axis =

E = mkgxby + 0.5%kmk(vxkk2+vykxx2)
+ 0.5%k*x(R-RO) **2
txt.text = 'E = %.16°f"

rate(1./0.040)
e I206-examp|e-09.py (partial)

% E

YOUR AMUSEMENT

®m Ajoint two-spring-ball system:

Iﬂw=(L51ﬁ

k=200 Ni/m — k(Ry— Ro) {(xz — :1:1),2 (Y2 — Y1) »
' Rs " Ry
(22, Y2)
Need to solve 8 equations
M) simultaneously
—mg)j
m=0.35 kg S
} v 1206-example-09a.py

l\] 47

A ROPE!

m If we replace the “stick” with a rope, is it possible? Surely we need

to use a simplified model to mimic a rope. # of equations:

Nieg * 4 = 200

mRope — O .lkg

k = IOOO*Nseg N/m
R() - lm / Nseg

fi = —kAR; - (
M = 1kg

Ax; 4 Aym
1
R R,

M = 1kg
m = O.Ikg / Nseg
_ ng See

| v \ 1206-example-09b.py
= .
— »

WAVE ON A STRING

®m Actually one can use a similar way to model a string — construct a
N segment (massive) string and solve it with small angle

approximation.
PP T 7
L=1m v = = 1A
M=1Kkg
w dyr dys

S
-~ ™
. .~
.. ..
. .~
S
- S
. .~
.
Ly ~s~
.
— $‘ ~~~ 1
— . N
. e]
S .~
AN S 1 ° ° ° ° °
S .~
. n
. N
. .]
N .~]
. ..
.
N
S
1 . .
.
IS
1 .
S
[]

] simple sine waves and solve
Y2 for the wave!

dr See
1206-example-10.py

WAVE ON A STRING Iy

m It is also fun to record the vibration of the string, convert it to a
wave file and play it out!

00000

Lo 0.045 sec recorded

1.0f i
Tension = 400 N, x = 0.01 kg/m, Hamonic #2, Frequency = 200 Hz

000000
0.0

R — B R — —

For the case of T = 400 N, p= 0.0l kg/m, A= Im,
we are expecting to hear a 200 Hz sound! See

| 1206-example-10a.py
Z\ >0
—y P

COMMENTS

We have demonstrated several interesting examples, surely you
are encouraged to modify the code and test some different physics
parameters, or different initial conditions.

Basically all of those tasks can be easily done with the given ODE
solver. In any case these are examples are VERY PHYSICS!

Then — you may want to ask — how about PDEs? The general idea
of PDE solving is similar but require some different
implementations. There is no PDE solver available in SciPy yet. If

you want, you can try the following packages:
FiPy htip//www.ctcms.nist.gov/fipy/
SfePy http://stepy.org/doc-devel/index.htm|

Left for your own study!

51

http://www.ctcms.nist.gov/fipy/
http://sfepy.org/doc-devel/index.html

HANDS-ON SESSION

Practice 1:
Add some simple gravity to the system:

1.0

there is a red star shooting toward the
earth. Assuming the only acceleration |
between the earth and the red star is (0,0)
contributed by the gravitational force: ol oM
GMm q =
B = 2

r o

with GxM = 1. Thus: vo = (1.0,0.5)
dv 1 L) 1 1
a=— = F/m = = 0 CE— X 10

implement the code and produce the xo = (-1.,-1.)

animation.

52

HANDS-ON SESSION

W Practice 2:
damped or driven oscillators — please solve the following system
with the extra (damping/driving) force and the given physics
parameters.

Initial condition: t =0 sec, x = +0.1 m dr
; fb:_["E b=0.2Ns/m
or
€<——> fa=d-cos(wt) d=0.08N
Jo or Ja or w=mrad/s
fq = d - sin(wt)

53

HANDS-ON SESSION

‘ /ﬁ
m Please start with the given template on CEIBA. It can produce the

following plots if you solve them correctly.

X (m)
X (m)
X (m)

You may also play around with some what different
z physics parameters as well as the initial conditions.
—y P

54

