2XD7 XD
INTRODUCTIONTO A

NUMERICAL ANALYSIS

L o ™

Lecture 3-2:

Incorporating Nonlinear Models

Kal-Feng Chen

National Taiwan University }\

RECALL FROM THE LAST
LECTURE...

We have introduced the basic concept of machine learning,
imported the classical MNIST dataset for handwriting digits
recognizing, learned how to do the feature extraction, inject the
selected features into LDA and linear SVM, in the end, we have

input all of the pixels into SVM and reached a test accuracy of
~92%...

We have only introduced simple and linear methods so far. Before
the end we tried a SVM with non-linear kernel but the
performance only improves a little. Can we do better?

In the second half of this lecture we will start to talk about another
classical algorithm, Neural Network.

HOW LIFE IS SUPPOSED T0 GO

START END

o———%x

HOW LIFE ACTUALLY GOES

v [T Rk
Qo (,

{4

/ %
s .|
,:f"" /f ' /
Sl

AF
J

\
-

® Remember — the idea is to transform the data with
a kernel trick, and allows the algorithm to fit the
margin hyperplane in a transformed feature space.
The classifier finds a hyperplane in the transformed
space, the plane can be be nonlinear in the original
space. Some common kernels:

— Polynomial

K23, 2 5) = (72 - 25+)
~ Gaussian | Radial basis function (RBF)
k(25,2 5) = exp(—[7; — 74)?)

Remark: parameters have to be

)[\ 4
- »

REVIEW: NONLINEAR SVM /

0 P

® The RBF kernel works mostly out-of-box

for our “double donuts” example before :
the end of last lecture. N

® But it does not work for the real problem
of handwriting digits separation.

clf = svm.SVC(kernel='rbf', C=1.)
clf.fit(x_train, y_train)

s_train = clf.score(x_train, y_train)

print('Performance (training):', s_train) S

/ I302-example-0 | .PY (partial)

Let's “roll back™ to the inrtial/simplified problem of
Digit 0 & | classification with 2 features

IZ\ >
.\\— _)

KERNEL

® Switching to a non-linear kernel is easy, but..?

10 e RBF kernel [tz e pelieliiel
e ¥ kernel

0.8 A

Handwriting
true ones ™

0.4 A

Handwriting '/v

true zeros

0.0 A

0.00 0.05 0.10 0.15 0.20 0.25 0.30 035 0.40 0.45

EFFECT OF ANONLINEAR _#7°

0.8 A

0.6 -

0.4 4

0.2 A

0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45

clf = svm.SVC(kernel='rbf', C=1.)
clf.fit(x_train, y_train)

, / I302-example-02.py (partial) ‘
B -)

6

clf = svm.SVC(kernel='poly', C=1.)
clf.fit(x_train, y_train)

" 1302-example-02.py (partial)

HOW ABOUT USING A
NONLINEAR KERNEL? (I

m This is simply due to the parameters in the kernel usually
needed to be tuned! For example:

\

\
Polynomial kernel: k(a;, :E[j) = (W?Z . ?j + 77)d
Y=0.5,n=0.0 y=1.0,n=0.0 y=0.5, n=-0.5 y=0.5,n=—1.0

10+ 10« 104 10

-
.,

T ':.;{..' v ':.;{.'

Those parameters , 1 (and the regularization C) used in SVM

models are usually called the Hyperparameters, and they
should be tuned to get the best performance.

7

HOW ABOUT USING A
NONLINEAR KERNEL? (11

—

m This also happens to the RBF (Gaussian) kernel. The y
parameter indicates the width of Gaussian function:

RBF kernel: k(?z, ?3) — GXP(—V‘?z’ — ?j‘z)

00 00k 230 015 030 021 1) 0¥ 04 04 00 00 230 OIS 030 021 X0 0¥ 04 04 0 00k 230 015 030 021)0 0¥ 04) 04 00 00 230 015 030 021 10 0¥ 04 04 00 00k 230 015 030 02 20 0¥ 04) 045

¢ Small ¥ = wide Gaussian Large Y = narrower Gaussian »

Obviously 1t is important to choose a good parameter!

8

HYPERPARAMETER

OPTIMIZATION

In most of the ML algorithms, hyperparameter optimization'is a
step need to be carried out to get the optimal performance.

The tuning can be carried out by simply trying several reasonable
(based on experience) setups, or make an exhaustive searching in

the allowed parameter space.

As an example, let’s tune the two hyperparameters in the rbf
kernel, the regularization constant C and the kernel
hyperparameter y, with a classical grid search:

500

0.25

Cy=0572
e Just try all of the
= Cy ~ 0.5, | possible
C,y = 05,0.5

combinations!

HYPERPARAMETER
OPTIMIZATION (I

m Within scikit-learn, there is a tool can automatically help to try all 4
of the proposed combinations. Surely you can also perform such
an optimization by yourself!

import numpy as np
from sklearn import svm
from sklearn.model_selection import GridSearchCV

clf = svm.SVC(kernel='rbf")

param = {'C':[0.5,5.,50.,500.], 'gamma':[2.0,1.0,0.5,0.25]}
grid = GridSearchCV(clf, param, verbose=3)
grid.fit(x_train, y_train) < The grid search tool has

print('Best SVM:') a similar interface.
print(grid.best_estimator_)

s_train = grid.score(x_train, y_train)

s_test = grid.score(x_test, y_test)

print('Performance (training):', s_train)

print('Performance (testing):', s_test) " 1302-example-02a.py (parea)

10

HYPERPARAMETER
OPTIMIZATION (Il

Terminal output, as an automatic grid search:

Fitting 3 folds for each of 16 candidates, totalling fits
[CV] C=0.5, gamMa=2.0 ..ucceeeerrrrrnnnnnnnnnnnnnnnssssssssssnnnnnnnnss

[CV] ..vunn C=0.5, gamma=2.0, score=0.9940800378877576, total= 0.1s

[CV] C=500.0, gamma=0.25, score=0.9950272318257163, total= 0.1s

[CV] C=500.0, gamma=0.25 ... vttt tsrssnsnnnnnnnnnnnnnnnsssnnnnnnnnnnnss

[CV] C=500.0, gamma=0.25, score=0.9912343046671405, total= 0.1s

[CV] C=500.0, gamma=0.25essrtrrennnnnnnnnnnnnsnsssssssssnnnnnnnnns

[CV] C=500.0, gamma=0.25, score=0.9945510542525468, total= 0.1s
[Parallel(n_jobs=1)]: Done 48 out of 48 | elapsed: 8.1s finished
Best SVM:

SVC(C=50.0, cache _size=200, class_welight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.5, kernel='rbf’',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

Performance (training): 0.993604421634

Performance (testing): 0.995271867612

DIGITS RECOGNITIONW/ _#1
NONLINEAR SVM &

Let’s revisit the handwriting digits recognition (full Versionj
again, by simply modify the ending example from the
previous lecture to a nonlinear kernel.

optimization finished, #iter = 1523
With slightly tuned SVM + RBF obj = -158.940057, rho = -0.326238

kernel, the performance can be nSV = 928, nBSV = 0

: : Total nSV = 6202
v
better than the previous version! Performance (training): 1.0

Performance (testing): 0.9664
AN

clf = svm.SVC(C=5., gamma=0.05, verbose=True) itvw5<15y7bekweg
clf.fit(x_train, y_train)

s_train = clf.score(x_train, y_train)
s_test = clf.score(x_test, y test)
print('Performance (training):', s_train)
print('Performance (testing):', s_test)

" 1302-example-03.py (partia)

12

DIGITS RECOGNITION W/
NONLINEAR SVM (1

V4
U
= °3 .o X
2 — = n 38 &
-~ @ g & O —
= S < 2
mm .maKn9..Hl.
T o usOaIN\um
1SLh Omblmvo...br
Ee SESEERS
1.m f.mm_dmu%lnme
> E L 25§ >3 5E
s b* g ¥ POz
o2 g5 5 @O
OC&dot = &EFHA &
[]]

1-7
1-1

9-9
4-4
1-1
1-1
4-4
5-5
—
J
0-0
9-9

5-2
AG 7
>
0-0
0
22
L
4-4
L4y
9-9
3-3
9-9
4
6—-6
6—-6

9-9

4-4
“
9-9
71-7
g

727
]

[
03
€4 7% 6/
\ ¢\ + 6 9

1-1

5 G 7
2—!2

1-1

4-4
1-1
4-4

5-5
0-0

M~ m 6.(@7 _I_Iloo —
TIING NI TN =W
OO NI J N 2T M NG 7 9y
o o LN < @ LN m (@) ~ m
T TS TN TN (BT
— (@) O m < LN (o)} N N o
1599077 047 (17 2 Q5%
o~ O O — ™~ m o0 o O O
T O TN N0 7 N0
M~ o (@) m — O ™~ ™~ M~ m

13

INTERMISSION /

As we mentioned the hyperparameters (here are the C and y as the
Gaussian SVM) are essential for the ML algorithm performance. In
our previous full digits recognition example, we have already set

clf = svm.SVC(C=5., gamma=0.05, verbose=True)

which gives a good performance. What will be the performance if
you set the parameter to the default setting?

The training data is also an essential element for ML performance.
As mentioned in the previous page, the performance would be
superior if you inject all of the data. It would be interesting for —
you to try it once!

Then...it's the time for V4l
neural network!

ARTIFICIAL
NEURAL NETWORK

An artificial neural network (ANN), usually just called "neural
network” (NN), is a mathematical model or computational model
that tries to simulate the structure and /or functional aspects of
biological neural networks.

It consists of an interconnected group of artificial neurons and
processes information. They are usually used to model complex
relationships between inputs and outputs.

And this is not a new idea at all — was first proposed in 1943 by
McCulloch and Pitts. It has been developed for long and used in
many applications already. However, with the recent development
in the deep neural network, or deep learning, it becomes
extremely powerful in many of the ML applications.

WHAT AREWE GOINGTO 47
DO HERE? |

As we have been doing for many weeks already, we want to talk
about the core concepts of the method and algorithm, maybe
implement a simple version for helping the understanding. And
we will switch to one of the existing packages for further practice.

So in this lecture we are going to introduce and implement a
simple NN and show you how things work. After that we will
demonstrate how to do exactly the same thing with the popular
packages (Keras and Tensorflow).

For a further improvement of the network, we will touch it in the
next lecture and eventually approach to the idea of deep learning.

Hopefully this will give you a slightly better understanding of
“why it can work” than just show you the modern fancy

|7

foc

PERCEP TRONS AND
NEURON MODELS

® You may have seen such a neural

network schematics from many
various sources:

[t shows that a network is usually
built by connecting multiple
neurons (the “circles” in the diagram).

. Input e
Hence the neurons are the most basic Layer Hidden
building block of the neural network. Layer

Here the first step is going to implement a very classical neuron
model, called the “sigmoid neurons”, but however, it would be
nice to first understand the perceptrons before doing that!

PERCEPTRONS AND
NEURON MODELS (II)

A perceptron usually takes multiple binary inputs, e.g. xi, oo
and produces a single binary output:

X ~Wi|

Xy —2 output

X3 W3 threshold

Given the inputs are either 0 or 1, the idea is to introduce a weight
for each input and estimate the weighted sum of the inputs,

Y wix;. The output can be determined by whether the weighted
sum bypass a threshold or not, just like a logic gate:

1 if Ywix; > threshold

output ={ 0 if Ywix; < threshold

19

PERCEP TRONS AND
NEURON MODELS (Il

m It’s all about the decision making — you can in fact, model a daily
life problem with such a simple perceptron model. For example,
consider a decision of having an ice cream cone or not:

Do you have enough
coins in your packet? XI~wi
W2

outbu Eat or not to eat,
P 1ihat’s the question!

Is it hot today? X2

Did you have a big lunch X3 W3 threshold

today or not!

- Weights: decides the importance of each inputs, e.g. do you care
about the weather or how much food in your stomach?

— Threshold: decides the action taking criterion, e.g. a value to
| determine your love of ice cream.

IZ\ | 20

SIGMOID NEURONS

Although a perceptron design sounds rather reasonable and it can
be used to model all kinds of logic gates, but it has a critical issue
in the implementation of machine learning.

The usual learning is carried out by changing the weights or
thresholds a little bit and check whether the output is improved or

not. e.g. wi+Aw
X1~ Wi~
W2

output+AO
~~
output

X2

X3 W3 threshold

Given the inputs and outputs are only binary in perceptrons, this
will not work.

21

of neuron, which can smooth the binary operation to some
continuous function and still keep the nice property of
perceptrons, for example a sigmoid function:

Unit step (threshold) Sigmoid
f

1 Flx) = 1 1
f(x)= O1r0>x y (x)_l+e"tc
' 1if x=0 F /

-

1
z = szxz + b, output =o0(z2) = 7 exp(—z)

Here we take the “bias” to 00 A
replace “~threshold”, A0 ~ Z Ow; Awi % 0

[\ which is mathematically the same! It becomes differentiability!
22
~

NETWORKS ARCHITECTURE Y

m As we just discussed, a single neuron is like a logic gate. If 0
want to handle a more complex problem, it is necessary to
incorporate multiple neurons and hence the network architecture
becomes essential.

m A typical structure is like this, as multilayer perceptrons (MLP):

Q,,/’, /0 ~ There can be multiple input neurons,
\ ‘ for handling the actual input features.
There can be multiple hidden layers

of neurons, without connecting to the
input nor output directly.

\\\ \\ // -
— O | ~ There can be multiple output
[nput — neurons as well.
; |.ayer Hidden

Layer
2 23
— >

NETWORKS ARCHITECTU RB '

0

m If the network process the information only in one way (no loops){fE

l[‘\j

— e.g. data always feeds forward, never feeds back, this is
usually called the feedforward neural networks.

In such a case the whole network can be imaged as a huge and
complicated function, and each output is a function of inputs,
with all of the weights and biases as parameters of the function.

input pixels or

features

if the input image
~1 looks like a “zero”

L/ | ~() if the input image
Q \ i/ ' doesn’t look like a “zero”

Input
l.ayer

24

43 .
/ \ |
: ., \
; | _,. — A\
/ 4 J

v ,
”

NETWORKS ARCHITECTU RE,
(\ | D

Consider the earlier example of separating handwriting digits of
zeros and ones, with the two reduced features (only full pixel
average and centered average) and fully connected network.

=
- -

If we putin 1 layer of hidden 5 neurons, and two outputs (for 0
and 1 digit), this is the structure one expected to construct:

500 A

of biases:

0 (no biases for input)+
5 (hidden neurons)+

2 (output neurons).

200 A
100 ~

1250 n O = T T T T T T
0.05 010 0.15 0.20 0.5 0.30 0.35 040
1000 — O

750 1

500 A

— |

250 A

ol

0.0 0.2 0.4 0.6 0.8 1.0

. # of weights:
2 input 2x5 (ir?put to hidden)+
features & hidden 5x2 (hidden to output).
‘/\ neurons 27 parameters in total

W

25

NETWORKS ARCHITECTURE.

(V)

784
pixels

How about another
possible (but more
complex) configuration?

“}\“t\\
sy 0
WP ! 1o # of biases:
SN .
RO —2 outputs : :
3 P 0 (no biases for input)+
4 30 (hidden neurons)+
55 10 (output neurons).
1_ —6 # of weights:
Jili) —7/ ' :
Z’fl,\ o 784x30 (input to hidden)+
A > :
0 30x10 (hidden to output).
Jir
il .
23860 parameters in total
30 hidden - Lots of parameters to be
neurons optimized In the training!

26

COMMENT:
ANN STRUCTURE

Restrictedly speaking the term multilayer perceptrons MLP are
based on multilayers of sigmoid neurons (not perceptrons). This
name was there due to some historical reason and it is confusion in
fact.

There more different choice of activation functions. A typical
alternative choice is tanh(z), which is exactly the same as sigmoid
function but extended to negative. There are also a couple different
choices and to be discussed later.

A typical example of non-feedforward network is the recurrent
neural networks (RNN). The main idea in these models is to have
neurons which fire for a limited duration of time, and hence it
allows loops in the network.

27

® Remark: my implementation is definitely not prepared for a h1gh)
performance computation!

import numpy as np

def sigma(z):
return 0.5%(np.tanh(0.5%z)+1.) < activation function

class neurons(object): constructor: expected to get a tuple or
def __init__ (self, shape): < list of network structure, e.g. [2,5,2]
self. shape = shape

self.v = [np.zeros((n,1)) for n in shape]
self.z = [np.zeros((n,1)) for n in shapel[1:]]
self.w = [np.random.randn(n,m) for n,m in zip(shapel1l:1,shapel:-11)]
self.b = [np.random.randn(n,1) for n in shapel[1:]]
I no bias nor weights for first layer! " neurons.py (partial)
~ V stores the values of 0(z) - W stores the weights
~ Z stores the values of z = Ywixi+b -~ b stores the biases

| W b avre m.bﬁh&@d AS GausSsSiawn
‘[\ 28 ‘(amdow\ wumbexrs s"o\(v\owl
— by

FEEDFORWARD
CALCULATION

def predict(self, x):
self.v[0] = x.reshape(self.v[0@].shape)
for 1 in range(len(self.shape)-1):
self.z[1l] =
self.v[1+1] = sigma(self.z[1])
return self.v[-1]

np.dot(self.w[l],self.v[1])+self.b[1]

/ NEeUrons.py (partial)

- x| |+ = w0
: . z[l] the v[l+1] the
VIl che values bvgt-\lzletzlf V\I/"eel\%:tjs biat;g! gt]?che weighted sum values
at the previous P at the next at the next
and the next layer next layer layer layer

| layer
. 29
1;5; »

THE NN OUTPUT BEFORE _#7
TRAINING. .. p

Well, it is kind of difficult to test the feedforward network itself,
but we can in any case show the output before any training:

mnist = np.load('mnist.npz"')

x_train = mnist['x_train'] [mnist['y_train']<=1]/255.

y_train = mnist['y _train'][mnist['y train']l<=1]

Xx_train = np.array([[img.mean(),img[10:18,11:17].mean()] for img in
x_train])

y_train = np.array([[[1,0],[0,1]]1[n] for n in y_train])

from neurons import neurons

model neurons([2,5,2]) & calline the © |
out = np. array([model predict(x) for x in x_train]) cetiing The neurons

fig = plt.figure(figsize=(6,6), dpi=80)
plt.subplot(2,1,1)

class we just prepared

plt.hlst(out:.,Q: y_train[:,0]==1], bins=50, color='y")
plt.hist(out[:,0][y_train[:,1]==1], bins=50, color='g', alpha=0.5)
plt.subplot(2,1,2)

plt.hist(out[:,1] [y_ traln;:,0;==], bins=50, color='y")
plt.hist(out[:,1][y_trainl[:,1]==1], bins=50, color='g', alpha=0.5)

1t.show() |
A P 30 / 130 | -example-04.py (partial)

--'7

THE NN OUTPUT BEFORE
TRAINING... (Il “

m Before the training the network is acting like a random smez
function of the inputs. '

500 ~

400

400 A

| true ones

300 A

200 A

100 A

0.05 0.10 015 0.20 0.25 030 035 040 0.858 0.860 0.862 0.864 0.866

1200 A
1000 ~
800 ~
600 -
400 A

100 -
200 A

0 T —=
0.0 0.2 0.4 0.6 0.8 1.0 0.68 0.69 0.70 0.71 0.72 0.73 0.74

Now we should start to “train® the network to reach its
maximum separation power at the outputs!

— 31

® In order to train our network, it is required to define a loss
function, which indicates the distance between the current output
and their target values. A typical choice can be this mean squared
error (MSE), it should be minimized in the training process:

1
Loss(w;, b;) = o Z ly(z) — t|°

400 A

True True
Zeros ones

300 A 4000 -

200 1

2000 ~
100 A

0 - T T T T T T T T T T T
0.858 0.860 0.862 0.864 0.866 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 125 1.50

400 -

6000 - O I

4000 -

300 1

200 1

2000 1
100 A

0

0.68 0.69 -0.50 -0.25 0.00 0.25 050 0.75 1.00 1.25 1.50

32

TRAINING: THE METHOD—— /.

® One of the classical algorithms to minimize the loss function is the
gradient descent method. To find a local minimum of the loss
function, one takes steps proportional to the negative of the
gradient of the function at the current point, e.g.

-0 =0 — nV L { 0: any of the weights or bias

n: learning rate

More explicitly:

W; — W, = W 77_8L
Z v v (‘9wz
OL
L

TRAINING: THE METRHOD (H)' _

Note the loss function has to be calculated over all of the inut
data x. So the gradient of the loss function has to be averaged over

the input data: 1
DD

However in practice this calculation is very slow if the size of
input data is large. Hence the network also learns slowly. A
method named stochastic gradient descent (SGD) can be help to
speed up this process by limiting the calculation to a small
randomly chosen subset of the input data, and the gradient can be
calculated approximately:

VL%%iVka = w; — W, —wZ—EZaLx.’“

m

Such a small subset is usually called the mini-batch.
34

GRADIENT EVALUATION

Obviously the calculation of gradient is essential in the training
process based on the SGD algorithm. The question is how to do it
in an efficient way. You may already think of some numerical
differential as we introduced many weeks ago, but this is not good
enough to be used here.

In particular we have hundred thousands of parameters to be
tuned, and every numerical differential requires a couple of full
feed-forward calculations, and have to be carried out for many
input data sets — this will simply result a rather slow calculation
and again, a slow learning.

But due to the special structure of neural network, the gradient can
be in fact, calculated in a very efficient way. This method is called
back propagation.

35

I

BACK PROPAGATION

Let’s explain how it works by starting from the ending (output)
layer of the network with only one neuron. For a given data point
x and target t, consider the following small variation:

Ur—1
‘ Vy = O'(Zg) =0 (wgw_l -+ bg)
o (2e)
OL 1
0p = 5. where L = §(W — 1)?
<4 N aLang [() t] /()
= = |o(2¢) —t] -0 (2
oL ©7 Ouy 0z ‘ :
—— =
rF 0be The differentials at the ending layer
oL — 5 can be calculated easily!
Y, (Ue—1
Wy

36

BACK PROPAGATION (Il)-——— 1.

® Then propagate back by another layer of single neuron:

Up—2 Up—1

‘—. Vyp = O (wgw_l -+ bg) =0 (wg()'(Zg_l) -+ bg)

O(Zg_l) O(Zg)

0L 0L 8,25_1

Op—1 = = = Jpwyo’ (21
825_1 aZg 82@ ()
since <y — ng'(Zg_l) + bg
0L
= 0p—1 | |
Oby_+ Basically the calculations of the
= oL differentials are the same as the
= 0p_1Vp—_2 ending layer!
Owyp_1

J

)[\ 37
—— »

BACK PROPAGATION (lily %/

Summarize all of the formulae together, assuming a feedforward
calculation has been performed, hence the values at each layer (i.e.
z¢ are already known!)

oL
For ending layer: 0p = —O'/(Zg) — [O'(Zg) — t]O'/(Zg)
82)@
For other layers: 9p_1 = [wz - 5£]0'/(zg_1)
oL . .
— = Oy Based on this the gradient
For the gradient: Oby can be calculated, back
0L propagated from the
—— = OpUy_1 = 5@0’(25_1) ending layer. And the
Owy feedforward calculation is

performed only oncel

38

IMPLEMENTATION:
BACK PROPAGATION

We shall add corresponding stuff in the code:

Add the first derivative of the activation function: o’(z)

Add the arrays to store the gradient along weights (delw) and
biases (delb).

def sigma(z):

return 0.5%(np.tanh(0.5%z)+1.)
def sigma_p(z):

return sigma(z)*(1l.-sigma(z))

class neurons(object):
def __init__ (self, shape):
self.shape = shape

. ;eif.delw

[np.zeros(w.shape) for w in self.w]
self.delb

[np.zeros(b.shape) for b in self.b]

/ Neurons.py (partial)

39

IMPLEMENTATION:
BACK PROPAGATION (I

The main gradient estimate, to be carried out after feed-forward
network calculation:

def gradient(self, y):
for 1 in range(len(self.shape)-2,-1,-1):
if 1==len(self.shape)-2:
delta = (self.v[-1]-y.reshape(self.v[-1].shape))x*
sigma_p(self.z[1])

else: delta = np.dot(self.w[l+1].T,self.delb[1+1])x%
sigma_p(self.z[1])
delta
np.dot(delta,self.v[1].T)

self.delb[1]
self.delw[1]

y

_~ neurons.py (partial)

calculate 0 for ,' calculate ,' calculate o for,' calculate ,'
ending layer gradients other layer gradients

40

IMPLEMENTATION:
TRAINING WITH SGD

def fit(self, x_data, y_data, epochs, batch_size, eta):
samples = list(zip(x_data, y_data))
for ep in range(epochs):
print('Epoch: %d/%d' % (ep+1,epochs))
random.shuffle(samples)
sum_delw = [np.zeros(w.shape) for w in self.w]
sum_delb = [np.zeros(b.shape) for b in self.b]
batch_count = 0
for x,y 1in samples:
self.predict(x)
self.gradient(y)
for 1 in range(len(self.shape)-1):
sum_delw[l] += self.delw[1]
sum_delb[l] += self.delb[1]
batch_count += 1
if batch_count>=batch_size or (x is samples[-1]
for 1 in range(len(self.shape)-1):

randomize

< feedforward + backpropagation

sum_delw[1l],sum _delb[1l] = 0.,0.
batch_count = 0

print('Loss: %.4f, Acc: %.4f ret)

Updat ihts/bi self.w[l] —-= eta/batch_countxsum_delw[1]
pate WEIShtSIPIaS " se1f.b[1] —= eta/batch_countksum_delb[1.

make the training sample
paired in python list +

I for average of weights/bias

0]):

ret = self.evaluate(x_data, y_data) < measure the performance
' % / neurons.py (partial)

41

IMPLEMENTATION:
PERFORMANCE E\/ALUATION

Surely it would be necessary to evaluation the performance of the
network by comparing the output with the expected output.

One typical way is to calculate the loss function of the given data.

Another way is to calculate the accuracy. Since we have arranged
an output neuron per target class, so we can just take the largest
output neuron as the identified class.

def evaluate(self, x_data, y_data):

loss, cnt = 0., 0.

for x,y in 21p(x data, y_data):
Self predict(x) < feedforward
loss += ((self.v[-1]-y.reshape(self.v[-1].shape))**x2).sum()
if np.argmax(self.v[-1])==np.argmax(y): cnt += 1.

loss /= 2.xlen(x_data)

return loss, cnt/len(x_data)

/ NEUrons.py (partial)

42

Now we are ready to train...your network!

43

g}zgt {
LET'S TRAIN THE NETWO RK’”

!

'

- 3 ‘
‘\yd - —— ey)
= ¢ y

-

¢
m The real work is done in one line of “fit”:

x_train = np.array([[img.mean(),img[10:18,11:17].mean()]
for img in x_train])

y_train = np.array([[[1,0],[0,1]]1[n] for n in y_trainl])

x_test = np.array([[img.mean(),img[10:18,11:17]1.mean()]
for img in x_test])

y_test = np.array([[[1,0],[0,1]1][n] for n in y_test])

from neurons import neurons
model = neurons([2,5,2])
model.fit(x_train, y_train, 20, 30, 1.0) < with 20 epochs, mini-batch of 30

print('Performance (training)"') learning rate = 1.0

print('Loss: %.5f, Acc: %.5f' % model.evaluate(x_train, y_train))
print('Performance (testing)')
print('Loss: %.5f, Acc: %.5f' % model.evaluate(x_test, y_test))

out = np.array([model.predict(x) for x in x_train])

fig = plt.figure(figsize=(6,6), dpi=80)

‘Z\ s e s " / 1302-example-04a.py (partial)
44
. D

0

You can see the performance increases as epochs:

Epoch: 1/20

Loss: 0.0904, Acc: 0.9173
Epoch: 2/20

Loss: 0.0596, Acc: 0.9365
Epoch: 3/20

Loss: 0.0469, Acc: 0.9455
Epoch: 4/20

Loss: 0.0356, Acc: 0.9655
Epoch: 20/20

Loss: 0.0075, Acc: 0.9928
Performance (training)
Loss: 0.007/54, Acc: 0.99281

Performance (testing)
Loss: 0.00546, Acc: 0.99574

o Outputs

4000 A

3000 -

2000 -

1000 -

0.0 0.2 0.4 0.6 0.8 1.0
5000

4000 A

3000 -

2000 -

1000 -

0.0 0.2 0.4 0.6 0.8 1.0

And very good separation at the
two output distributions!

45

NOW GO FOR FULL DIGITS -
SEPARATION. ..

m With a smaller scale test (only two features) it works rathe well,
How about if we put in all of the pixels and all of the training
images?

mnist = np.load('mnist. npz ')

X_train = mnist['x_train']/255.

y_train = np.array([np.eye(10)[n] for n in mnist['y train']])
x_test = mnist['x_test']/255. < data prepared
y_test = np.array([np.eye(10) [n] for n in mnist['y_test']])

from neurons import neurons
model = neurons([784,30,10]1)
model.fit(x_train, y_train, 20, 10, 3.0) < with 20 epochs, mini-batch of 10

print('Performance (training)"') learning rate = 3.0

print('Loss: %.5f, Acc: %.5f' % model.evaluate(x_train, y_train))
print('Performance (testing)')
print('Loss: %.5f, Acc: %.5f' % model.evaluate(x_test, y test))

J / I302-example-05.py (partial) |

= “
- >

With only ~66 lines of code we
can already build a simple
feedforward network + SGD
training for handwriting digits
recognition!

And you can see the
performance is not bad either.
With 20 epochs of training we
obtained a test accuracy of
~94.9%.

But it is still not yet as good as
the best SVM of ~98.4%...!

NOW GO FOR FULL DIGITS .47
SEPARATION. .. (I '

47

Epoch: 1/20

Loss: 0.0764, Acc: 0.9076
Epoch: 2/20

Loss: 0.0587, Acc: 0.9292
Epoch: 3/20

Loss: 0.0538, Acc: 0.9351
Epoch: 4/20

Loss: 0.0480, Acc: 0.9433
Epoch: 20/20

Loss: 0.0317, Acc: 0.9636
Performance (training)
Loss: 0.03172, Acc: 0.96358

Performance (testing)
Loss: 0.04477, Acc: 0.94860

-

%
=
O
A
—
—
»
L1
ad
O
L1
O
O
O
Z

SEPARATION. .. (Il

>
[2 S B8
Mﬁ eWJ W,m B
& > S 82 85 .. 3
ES 5 g T RT R Y L S
- O S O o S o N g o
U S = etb?.ShnDlr
o QA IS - PN 7 S o 9
oy
SdeHWOBECSG
mUSﬂthtaTb v =
lOtup ngthf
c - w» O_ S = = ¥ O
= n O .9 g ~ oS 9 g o
e.ﬂtvrh%ounﬂv =
s P8 ESERBEER L E T
N T =0 EZERIK Z & &

9-9
4-4

1-1
1-1
4-4

<
> 4
0

L 4 Y

5-5
—
J
-0

7-7
1-1
9-9

9-9
G
6—6

9-9
1-1

71-7

9 7

4-4

&

1-1

I

1'—?1 22
4-4

O H |
6—-6

5-5
0-0
22 73

4-4
9-9
1-7

04930
7%
\ ¢ \ + C g

71-7
4-4
4-4

1-1

Z | 64 14 A
|

Y Ew

FiNGens 97 P —3 ¥

™~ m O ™~ — (00) —
02O N J N 10T M NG 7

o o LN < N LN m (®)] M~ m

— o)) O m < N @) o o))

1 oﬁqr.rm.%—.ﬁ...ﬂﬁ 1 %__rubﬁl.m%i%

TN PO T 7 o (15 02 Q9%

N O — ™~ m o0 o O O

71-7
V4

48

COMMENT:
TRAINING VS TESTING \

As it has been already pointed earlier, the performance measured
using the training sample and the testing sample can be rather
different. This overfitting (overtraining) is a typical situation in the
ML algorithms.

One can image that this is due to the fact that the algorithm or the
parameters are more adjusted with the training data. The
following code demonstrates such a situation:

scores = np.zeros((4,100))

from neurons import neurons

?ggeépziﬂeggﬁggg{gg?; 30,101]) stores the loss function &
model.fit(x_train, y train, 1, 10, 3.0) < accuracy for 100 epochs
scores[0] [ep],scores[1] [ep] = model.evaluate(x_train, y_train)
scores[2] [ep],scores[3] [ep] = model.evaluate(x_test, y_test)

/ | 1302-example-05a.py (partial)

49

COMMENT:

TRAINING VS TESTING (1) .

0.150 A

® A comparison of training and
testing performances.

m Strong overfitting happens after
few epochs already, while

training performance improves
for long but not the testing

performance.

vep
fig

plt.
plt.
plt.
plt.
plt.

= np. linspace(1.,100.,100)
= plt.figure(figsize=(6,6), dpi=80)

subplot(2,1,1)
plot(vep,scores

subplot(2,1,2)

plot(vep,scores|
.plot(vep,scores

lgkflt.
—— >

show ()

0]
plot(vep,scores[?2

1], lw=3)
18]

/

, Ww=3)

1, lw=3) :

, lw=3)

1302-example-05a.py (partial) |

0.125 A

0.100 A

0.075 A

0.050 A

0.025 A

0.95 A

0.90 A1

0.85 A

testing

training

0 20 40 60 80 100

T T T

0 20 40 60 80 100

One may try to include more
training samples and such

Issue can be reduced!
50

COMMENT:
NETWORK STRUCTURE

® In our current setup the network is configured as 784/30/1 |
neurons. More neurons can provide a more complicated model. So

obviously adding more neurons (and layers) can, in principle,
improve the network performance.

m However one can already expect some side effects:

— Network with more neurons usually takes more time and
more difficult to train (with more weights and biases, and deeper!).

- A more complex network may also have
a stronger overfitting effect.

m There are existing tricks to preserve the
training etficiency, as well as mitigating
the overfitting problem.

Z\ >
B D

COMMENT:

THINGS TO B

CONSID

FRED -~ &S

® There are many things can be consider to improve the network.
Can be introduced either in the network structure, or in the
training, targeting a fast learning and good performance in the
testing sample:

'

=

-

The ¢

-

The ¢l
‘he ¢
‘he ¢
‘he ¢
he ¢

'he ¢

'he ¢

noice of network structure
noice of network initialization
noice of training sample

noice of input features

noice of training algorithm
noice of the loss function

hoice of the activation function

noice of hyperparameters

52

How to improve your
network is totally nontriviall
Let’s try a quick & easy
tweak first!

WEIGHTS INITIALIZATION "”

. 1750 Initial
® Remember our weights (and

biases) were all initialized with
standard Gaussian distributed
random numbers.

weights

1500 A
1250 A
1000 A

750 A

m It seems that it works quite well!
But is there any hidden issue?

500 ~

250 A

class neurons(object): = 0 ; ;
def __init__ (self, shape):
self.shape = shape

self.w
self.b

Z\ 3 >3

[np.random.randn(n,m) for n,m in zip(shapell:]1,shapel[:-11)]
[np.random.randn(n,1) for n in shapel[1:]]

/ NEUrons.py (constructor/partial)

WEIGHTS INITIALIZATION

0

m In fact there is an issue indeed! Just consider the calculated value

at one neuron at the first hidden layer:

1000 A

Z = E i; + O 500
i

Z is the sum of 200 1
many weights, 100
and it is large!

784
inputs

1.0 A
when Z is large, it is

difficult to change 0.5 -
after filling into the

insensitive

region

0.0

activation function!

54

-20

-10

WEIGHTS INITIALIZATION

0

® Sum of N input standard random Gaussian numbers will result a’

Gaussian with a width of v N

B As an easy fix — let’s just scale the initial weights by this factor!

m Even just with such as small fix, the
learning speed is already much faster
than the previous setup!

from neurons import neurons

ml = neurons([784,30,10])

m2 = copy.deepcopy(ml)

for w in m2.w: Jl sqrt(# of inputs)
w /= (w.shapel[l])*x0.5

for ep in range(50):
ml.fit(x_train, y_train, 1, 10, 3.0)
m2.fit(x_train, y_train, 1, 10, 3.0)

0.20 A

0.15 4

0.10 A

0.05 4

0.00

Loss
original func.

initialization

scaled
\\initialization

0 10 20 30 40 50

l\ " 1302-example-05b.py (partial) { s

BEFORE MOVING TO THE v
NEXT STEP... '

With improved initial weights
and the same 20 epochs of
training we can already improve
the test accuracy of from 94.9%
to 95.8%!

This is in fact very encouraging!
A small tweak already gives us
some visible performance boost.
How about other possible tuning
mentioned earlier?

Some of the “state-of-the-art”
tricks will be discussed at the
next lecture!

Epoch: 20/20

Loss: 0.0317, Acc: 0.9636
Performance (training)
Loss: 0.03172, Acc: 0.96358
Performance (testing)

Loss: 0.04477, Acc: 0.94860

/ 1302-example-05.py output

|

Epoch: 20/20

Loss: 0.0225, Acc: 0.9752
Performance (training)
Loss: 0.02249, Acc: 0.97518
Performance (testing)

Loss: 0.03646, Acc: 0.95840

y 1302-example-05c.py output

56

BE PREPARED FOR THE
NEXT LECTURE

® Instead of our own implemented neurons.py, we will adopt the
widely used packages, Keras (with the TensorFlow backend).

m This will give us “ready-to-use” network models and tools, will all of
the commonly used tricks implemented.

® More to read/discover at the first place:
https:/ /keras.io
https: / / www.tensorflow.org

il.-

| Tenso
=

Keras

57

https://keras.io
https://www.tensorflow.org

BE PREPARED FORTHE ¢/
NEXT LECTURE (Il *

Up to now TensorFlow still requires python 3.6. If you have!installed
python 3.7 from anaconda and have not yet downgraded it, you may
want to do it now:

This will take a while!

conda install python=3.6 Do it early!

You can already try to install Keras+TensorFlow already by

conda 1install keras

If you are not using anaconda, it can be installed though pip as well:

pip 1install keras

Stay tuned for the next lecture!

58

HANDS-ON SESSION

m Practice 01:
Take 1302—-example-01. py as the template,
modify the used algorithm from Gaussian
SVM to the neural network. See if you can
find a good separation or not!

m Tips: 3
- If you want to use the neurons. py given 3 f
above, it is required to convert the AT

y_train array from simple categorizing, .
e.g. 10,1,0,0,1] to two target outputs,
e.g. [[1,01,[0,11,[1,01,[1,01,[0,1]]

- You may also try Keras or the scikit-learn:

http: / /scikit-learn.org / stable /modules /neural_networks_supervised.html
A »

59

http://scikit-learn.org/stable/modules/neural_networks_supervised.html

HANDS-ON SESSION

Performance (training):
Loss: 0.xxxx, Acc: 0.yyyy
Performance (testing):

Practice 02: Loss: 0.xxxx, Acc: 0.yyyy

Trial #1:
Enlarge the size of the hidden layer from 30 neurons to 100
neurons in the network used in 1302-example-05. py. See how
good you can reach at the end of the training? (remark: some
tuning of the learning rate and # of epochs might be needed to get

a good performance!)

Trial #2:

Improve the network used in 1302—-example-05. py by scaling
the initial weights, as introduced in 1302-example-05b. py. See
how good you can reach at the end of the training?

60

