import numpy as np import matplotlib.pyplot as plt x_train = np.random.randn(1000) y_train = np.zeros(1000) from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD model = Sequential() model.add(Dense(units=1, activation='sigmoid', input_dim=1)) model.add(Dense(units=1, activation='sigmoid')) model.compile(loss='mean_squared_error', optimizer=SGD(lr=1.0)) model.layers[0].set_weights([np.array([[2.]]),np.array([3.])]) model.layers[1].set_weights([np.array([[4.]]),np.array([5.])]) rec = model.fit(x_train, y_train, epochs=100, batch_size=100) vep = np.linspace(1.,100.,100) fig = plt.figure(figsize=(6,6), dpi=80) plt.plot(vep,rec.history['loss'], lw=3) plt.show()