2XD7 XD
INTRODUCTIONTO A

NUMERICAL ANALYSIS

L o ™

Lecture 3-3:

Tricks for Improving Neural Network

Kal-Feng Chen

National Taiwan University }\

RECALL FROMTHE LAST
| ECTURE...(AGAIN)

Last lecture we started to play with two nonlinear models,' SVM
with non-linear kernel, and the very classical Neural Network.

Taking the MNIST data set as an benchmark, the SVM with
Gaussian kernel can have a very good performance of ~98.4%
accuracy!

Our super simple neural network can already provide a good
handwriting digits recognition with an accuracy of ~95%. With a
slightly better initial weights the performance can be pushed to
~96% . Remember this was performed by a simple model of
784-30-10 network and only 20 epochs of training so far.

Can we do better, by considering some of the state of arts
techniques? Or can we further improve it by introducing a deeper

network structure?
2

Time to tune
our network for
a better performance!

/// / 7 ' ('-._ \“

YOU MUST HAVE HEARD _#7/

41
T, £ '.’_a ;’;-””i"“,

- B N h- P ‘-_,—v /&
. - !
- =

THETENSORFLOW... A5 -

‘ y-:.]4~ P
= |
\?‘ — 7R ; ——

= A
TensorFIOW - Install Develop APIT1.7 Deploy Extend Community Versions

AN open source machine learning
framework for everyone

GET STARTED

m TensorFlow is an open source software library for high
performance numerical computation originally developed by
Google. It comes with a strong support for machine learning and
deep learning model and can run on CPU/GPU, or even the TPUs.

® But in order to have an even easier live, we will use something
even simpler!

4

https://www.tensorflow.org

HERE COMES THE KERAS

KK Keras Documentation P g e OEdit on GitHub

Keras: The Python Deep Learning library httPS://ke 'as.lo

Home

Keras: The Python Deep Learning library
You have just founc Keras.

Guiding principles

Gatting started: 30seconds to Keras
Installation

Us'ng a different backend than

TensorFlow

Supoort You have just found Keras.

Why this namea, Keras?

Why use Keras Keras is a high-level neurzl networks API, written in Pythan znd capable of running on top of TensarFlow, CNTK, or
Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the
least possible delay is key to doing good research.

Guide to the Sequential mocel

m Keras is a kind of “wrapper” or package which can help to build
most of the conventional NN models, and the real calculation can
[\ be carried out by TensorFlow, as one of the supported backends.
— >

5

https://keras.io

INSTALLATION OF
KERAS + TENORFLOW &

If you are using anaconda package, this can be done by typing this

under your terminal:

conda install keras

If it is working you will find both keras and tensorflow being
installed. If you are not using anaconda, the package can be installed

though pip:

pip install keras

A quick test can be made by just import the keras module directly:

% python

Python 3.6.4 |Anaconda custom (64-bit)| (default, Jan 16 2018,
12:04:33). . . .

>>> import keras

Using TensorFlow backend.

THE "BASELINE"
NETWORK MODEL

At the end of last lecture we have constructed a
simple model with our own implementation.
This serves as our starting point:

XY,
0y

S
\ Vaw. vl
W

The network structure also consists with 3
layers, with one hidden layer of 30 neurons.

The chosen activation function is also 784
the sigmoid function. pixels

The selected loss function is exactly the mean
squared error, MSE.

The network will be trained using stochastic
gradient descent SGD method.

What would be the performance if we construct
exactly the same model with Keras!

7

30 hidden
neurons

KERAS A

m It is more-or-less straightforward to build the network with

mnist = np.load('mnist.npz"')

X_train = mnist['x_train']/255.
y_train = np.array([np.eye(10)[n] for n in mnist['y_train'l])
Xx_test = mnist['x _test']/255.

y_test = np.array([np.eye(10) [n] for n in mnist['y_test']])

from keras.models import Sequential
from keras.layers import Dense, Reshape
from keras.optimizers import SGD

model = Sequential() < build a 784-30-10
model.add(Reshape((784,), input_shape=(28,28))) model
model.add(Dense(units=30, activation='sigmoid'))
model.add(Dense(units=10, activation='sigmoid'))

model.compile(loss='mean_squared_error', < Loss = MSE
optimizer=SGD(1r=3.0), < training with SGD
metrics=[‘accuracy']) < also output accuracy

A -.
- J)

BUILDING NETWORKWITH .
KERAS (Il

model.fit(x_train, y_train, epochs=20, batch_size=10) < train for 20 epochs

print('Performance (training)"')

print('Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_train, y_train)))
print('Performance (testing)')

print('Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_test, y_test)))

e 1303-example-01.py (partial)

Using TensorFlow backend.

Epoch 1/20

60000/60000 [=============] - 65 100Qus/step - loss: 0.0205 - acc: 0.8841
Epécﬁ é@)Zé

60000/60000 [=============] - 65 107us/step - loss: 0.0045 - acc: 0.9766
Performance (training)

60000/60000 [=============] - 1s 20us/step

L : 0.00437, Acc: 0.977 _ .

ngﬂsco rgagge?)(tes%cing? Yy Already get a similar/slightly better
10000/10000 [=============] - 0s 19us/step result? What are the remaining

Loss: 0.00622, Acc: 0.96620

A ?

wrongly tagged digits now!

WRONGLY RECOGNIZED .

4
DIGITS?

At the end of the training we can feed the test data into the |
network and see the resulting “test” performance. An accuracy of
96.6% means we have only around ~300 images were wrongly
tagged by our network.

. 1 'JI

The following piece of code is prepared to show first 100 of the
wrongly tagged images:

/| A8 —
/
A |
=y

-— -
™ v

‘ >

-
>

p_test = model.predict(x_test)
failedsample = [[img,y,p] for img,y,p in
zip(mnist['x_test'],y _test,p_test) if y.argmax()!=p.argmax()]

fig = plt.figure(figsize=(10,10), dpi=80) I pick up those wrongly
for i in range(len(failedsample[:100])): tagged samples
plt.subplot(10,10,i+1)
plt.axis('off")
plt.imshow(failedsample[i]l [0], cmap='Greys"')
plt.text(0.,0., " '$%d\\to%sd$' % (failedsamplel[il[1].argmax(),
failedsample[i] [2].argmax()),color="Red', fontsize=15)

plt.show() / 1303-example-0la.py (partial)

10

WRONGLY RECOGNIZED

DIGITS? (I

v O 2 =

— ab) v
S S > o2 e dE
. N > N - o r— €N n o
T B 9w 49239z
— o0 n S = g O 5 2
e — G — S © A oo
< 4 ° 8 A s 2T 2 S

L a0 W v QO _ % o - QL
Y & ¢ 5T 038 85 .c
n FE = o 8§ &% Y w3 T
c = 2 20 £ 30 & €8 8 5
mﬁm.mm&two% SE g &

-+ N -
o ¥ 8o P == N > =
Vl. c o O = M .= m N N © N o
<

AR SV S SRS ISR
85852#\1\4&‘731;!7?492 9ulﬂr.
7 T) 7 7) 7 1 #
(@) LN N~ (@) LN N~ < o — LN
01U 010 0I I D -
m <t m — (@)} m O N~ o
PNIPIMNe 0D V6] I
I~ m N o0 < I~ @\ N m (@)}
LONE A e BET AN T AT NG R 07 &
Fe=t N M~ e J i1t ¥
< (00] 6Loo m m m < N N~
20707 Jne 9 w507 &3P e A
(o (0] LN < < LN N (00] LN <
POV N S T 1
FLPT AT WTAT AT N (N TN

I

SLOW LEARNING WITH
BAD WEIGHTS

m Based on the NN model up to now, one of the typical issue we may
face is this: when the initial weights are very far from the optimal,

the learning is actually slower.

m This is very different from our intuition in fact — usually human
beings learn faster if they are very wrong. But this is not the case for

your NN.

® A demonstration simple network with only one input layer and one
output layer, with 2 weights and 2 bias. Let’s set the weights/bias by
hand to some particular values:

Input x: w =2, w =4, B
a random Gaussian ‘3 ‘_ output target t =0
b = b =5.

‘[\ | 12
T P

SLOW LEARNING WITH

BAD WEIGHTS (II)

Such a model can be built with Keras easily as well:

X_train = np.random.randn(1000)

y_train = np.zeros(1000)

from keras.models import Sequential

from keras. layers import Dense

from keras.optimizers import SGD

model = Sequential()

model.add(Dense(units=1, activation='sigmoid', input_dim=1))

model.add(Dense(units=1, activation='sigmoid'))

model.compile(loss="'mean_squared_error',
optimizer=SGD(1r=1.0))

model. layers[0].set _weights([np.array([[2.]]),np.array([3.])])

model. layers[1].set weights([np.array([[4.]1]1),np.array([5.1)1)

rec = model.fit(x_train, y_train, epochs=100, batch_size=100)

vep = np.linspace(1.,100.,100)

fig = plt.fiqure(figsize=(6,6), dpi=80)

plt.plot(vep, rec.history['loss'], lw=3)

plt.show()

A simple sequential model

Jlwith only | input / | output net

M keep the history of trainin,

iron

3

/ 1303-example-02.py (partial)

|3

SLOW LEARNING WITH
BAD WEIGHTS (Il

m This is what you may find: the loss function is large for initial epo’?éhs
— and it takes for a while until the training really starts.

®m Remember this network is already very simple with only 4
parameters to be tuned. But such a situation M
does happen.

1.0 A

) Surely the situation Is
081 better If one uses a
different inrtial values, e.g.

0.2 A
0.6 L

w = 2. w = 4. I

Loss b =3. b =2.
func.

," . - Both this also hints a problem of our network!

(I) 2IO 4I0 6I0 8I0 1(I)0 | 4
—)

THE CHOICE OF LOSS

= In fact such a situation can be related to the definition of the loss |
function, and its gradient w.r.t. the weights and bias.

m Consider the current choice of loss, the mean squared error:

1
Consider only one output: L(w, b) = 5 o(z) — t|?

oL = [o(2) — t]o'()—az
Gradient is required ow _ °\° . - .
d The training speed Is
in the training process: 0L 0z 5 P

5 (0(2) — t]al(z)% proportional to the
first derivative of
1.0- the activation
slow training slow training function! If the z value
O'(Z) 051 due to small due to small <1 | | ¢ I
o'(2) 7'(2) s too large or too small,
0.0 —— , | | | the training will be very

J

-20 -10 0 10 20
l[\ | >
"‘_ _J)

THE CHOICE OF LOSS ()€

4

® This can be improved by introducing a different loss function, for’’
example, the (binary) cross-entropy function:

n

Loss(w;,b;) = — Z tiny 4+ (1 —1)In(1 — y)]

Consider only one output & 7, — —[t In 0'(2) e (1 _ t) ln(l — g(z))]
replace y by 0(z):

Gradient w.r.t. weights/bias: g—i = —t(;((j)) g; (1 —1¢) 1 (i (UZ()Z) gz

| | o' (z) 0z
o(z) =(14e7*)"" = lo(z) — 1] {0(,5)[1 —o(2)] } ow
o (2) = 0(2)[1 — ()] Oz Cawncelled

--
.

| Not depending on the first
[\ derivative ”(z) anymorel!
N »

THE CHOICE OF LOSS

(111

m This effect can be tried easily!

m Indeed the cross-entropy function can speed

N

Loss vs.
201 Epoch

1.5 1

1.04 =

0.0 1

up the learning even with bad initial weights! CI’OSS-enU’OP)l

0

mode
mode

mode
mode

vep
fig
plt.
plt.
plt.

recl =

rec2 =

L.compile(loss="'mean_squared_error'
l.layers[0].set_weights([np.array ([[2

model. layers[1].set_weights([np. array([[4]] np array([5]

L.compile(loss="'binary_crossentrop
1. layers[0].set_weights([np.array ([[2]

model.layers[l].set_weights([np array([[4]]) np array([5]

np.linspace(1.,100.,100)
plt.figure(figsize=(6,6), dpi=80)
lot(vep,recl.history['loss'], 1lw=3)
plot(vep,rec2.history['loss'], 1w=3)
show ()

model.fit(x_train, y_train, epochs 100, batch_size=10

model.fit(x_train, y_train, epochs=100, batch_size=10

tlmlzer SGD(1r=1
.array([3.]g

)

® |_||_|®

tlmlzer SGD(1lr=

)

)

)

)
1.0))

.array([3.]1)])

)1)

)

]
]
0

/ 1303-example-02a.py (partial)

|7

THE CHOICE OF
OUTPUT LAYER

Another approach to the same problem is by introducing the
softmax layer, instead of the classical sigmoid function.

The softmax layer is a different type of output layer, it can be

expressed as
P exp(z;)

Y; = k: classes
’ D 1 exp(2k)

The output of the network vy is replaced by the formula above. Given
it is normalized (summing all of the outputs will be one by
definition), another benefit of softmax layer is that the output values
can be treated as a probability, which is not the case for the classical
sigmoid function.

By combining this with the cross-entropy function, it can be another
remedy to the slow learning problem.

|18

SOFTMAX +
CROSS-ENTROPY LOSS

The (Categorical) cross-entropy loss function for a given training
sample i L =— Z tiIn(y;) j:classes

J
You may find this is just an extended version of the previous cross-
entropy function which was derived for 2 classes (binary case).

Let’s first calculate the partial derivate for y; w.r.t. z; (remember z; is
linear sum of weights times the outputs from previous layer + bias):

Oy —eder
0% If j+i: 8—7; — (Z) — —YilY;
Yj = ol ’
2 e o Qv _ (X e) —eten
0z (Do e**)? B

‘Z\ 7

SOFTMAX +
CROSS-ENTROPY LOSS (H)

Then the derivative for the loss function itself:

1 ay

=—) t;iln(y,;) ™ = — J
UL Z

. Lo O J o .
0z; y; 0z; oy y; 0%;
= —t;(1 —yi) + thyq; = —t; +1;y; + thyz-
JF# JF
[t ends up with the same
= —t; +y; | t; + Z ti | =y — ¢t results as before and no
i dependency on 0”(z)!
y = target value for class] 4 should solve the slow learwing

‘Z\ by definition 2t; = | 20 problem as well

TRY IT OUT!

model = Sequential()

model.add(Reshape((784,), input_shape=(28,28)))
model.add(Dense(30, activation='sigmoid'))
model.add(Dense(10, activation='softmax"'))

model.compile(loss="'categorical_crossentropy'’,
optimizer=SGD(1r=1.0),
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=20, batch_size=3@{//~Iyn4mmnm&01m“mmm)

Using TensorFlow backend.

Epoch 1/20

60000/60000 [=============] - 3s 45us/step - loss: 0.2924 - acc: 0.9114
Epoch 20/20

60000/60000 [=============] - 2s 4lus/step - loss: 0.0465 — acc: 0.9850
Performance (training)

60000/60000 [=============] - 1s 22us/step

bosg: 0.0422%:c Agg: ?.98613 Although the performance for
erformance (testing . .
10000/10000 [=============] — @5 23us/step 'Uannngsanuﬂe|snmeoved,but
Loss: 0.13640, Acc: 0.96350 the performance for testing

‘Z sample is still similar!
\ .

21

e g/

We have two possible treatments that can be used in the
classification problem:

sigmoid activation + binary cross-entropy loss
softmax layer + categorical cross-entropy loss

You may find they have a very similar formulation and similar
behavior. This is due to the fact that sigmoid is special case of
softmax function (if you compare them carefully), and the binary
cross-entropy loss can be considered as a “yes/no” problem for each
output neuron.

In our handwriting digits example one can solve “10 binary
problems” with the binary cross-entropy loss, or “one out of 10
choices” with categorical cross-entropy loss.

Remark: Keras may give a different accuracy value If
you do sigmold activation + binary cross-entropy loss

22

INTERMISSION

When introducing softmax layer + categorical cross-entropy loss, '
the output softmax function is :

- exp(z)
I 21 €xp(2k)

which can be considered as “probability” out of the multiple
choice, and this is one of the interesting aspect of the softmax layer.

Try to extract output value of the best and second best options
from the remaining wrongly tagged digits, see if their values are
not too far from each other (ie. the second option has fairly good
chance to be correct), given the probability interpretation
of the softmax layer?

23

m We have touched slightly on this issue at the end of last lecture.
Now we shall come back to it again.

® The training performance is indeed keeping improving with more
epochs, but the testing performance saturated quickly.

m Demonstration with Keras tool again:

= model.fit(x_train, y_train,
epochs=100, batch_size=120,
validation_data=(x_test, y_test))

= np.linspace(1.,100.,100)
= plt. flgure(f1951ze (6,6),

.subplot(Z 1,1)
.plot(vep,rec history

.plot(vep, rec.history|

.subplot(2,1,2)

.plot(vep, rec.history|
.plot(vep, rec.historyl

.show()

dpi=80)

w=3)
lw=3)

['loss '],
'val loss'],

lw=3)
lw=3)

'acc'],
'val_acc'],

0.35

0.30 A
0.25 A
0.20 A
0.15 A
0.10 A
0.05 A
0.00 ~—

1.000 A
0.975 -~
0.950 ~
0.925 ~
0.900 A
0.875 A

0.850

Loss func

testing

training

80

Accuracy

80

" 1303-example-04.py (partial) [

TRAINING DATA DOES
MAT TER

sample. By increasing the training data size the overtraining is

indeed mitigated:
0.35 0.35
0.30 1 0.30 -
0.25 - 0.25 1 :
0.20 - . 0.20 - testin
testing | | o, Bk
0.10 1 — 0.10 - —
0.05 tl"alnlng 0.05 - tralnlng
00073 20 40 60 80 100 0007 20 40 60 80 100
1.000 A 1.000 A
0.975 - 0.975 - - o rp———
0.950 - 1— > 0.950 - —
sonc) 10,000 . 60,000
Training Samples o« Training Samples
08503 20 40 60 80 100 08503 20 40 60 80 100

But In many of the cases training samples are difficult to collect and
expensive. Can we do something without just adding more the data’

25

REGULARIZATION

A method is called “Regularization” or “weight decay”
may help to reduce the overtraining situation.

The idea is to introduce an additional term to the loss function:
A A
L:LO+EZ]w\ or L:LO—I—%ZUJQ

The form given above is usually called the L1/L2 regularization,
where the A is the reqularization parameter (A>0) and n is the size of
training sample.

One can see the gradient of the loss function will be modified and
change the learning step (taking L2 regularization as an example):

oL _ Lo A . 9L A
—_— = I W _
ow ow n d ow nn
N YR M)\ 8L
| The weights will "decay’ by _ y 0
‘Z\ a factor du‘(i?ng the Jcraivrmg Process (1 ') w=1 Ow

n

26

REGULARIZATION (Il

By introducing such a “weight decay” to the training, the we ights‘f
will be pushed toward smaller values. But why a network with
smaller weights can have a smaller overtraining problem?

Consider a fit to the data points along the x-axis, the “weights” are
just the coefficients of the polynomial terms:

f(il?) :w0+w1$+w2$2—|—QU3£U2—|—U}4:134—|—1U5335_|_...
- f($):w0-|—w1$—|—w2x2—|—O:132—|—Oaj4—|—()$5_|_...

t t By reducing the weights for all terms,

R it actually removes the higher order
r o
° 2. term and make the fit to be less
sensitive to the noise (local

> > fluctuation), and resulting a more
robust model.

REGULARIZATION (Illy

m Let’s try this method quickly with Keras.

If we simply add this weight decay

feature to the weights of the output layer, o : training

one can see the overtraining effect is

reduced: o testing
2o w/0 L2 reg.

0.850 ~— T T T
0 20 40 60 80 100

1.000 -

from keras.regularizers import 12 0:975 1

0.950 ~

m2 = Sequential() oo
m2.add(Reshape((784,), input_shape=(28,28))) ... w/ L2 reg

m2.add(Dense(30, activation='sigmoid')) 0850 112

0 20 40 60 80 100

m2.add(Dense(10, activation='softmax',

kernel_reqularizer=12(0.01)))

m2.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=1.0), metrics=['accuracy'l])

: S " 1303-example-04a.py (partial)
IZ\ 28
.\\— _)

R

Another useful method to reduce the overtraining is the dropout’
technique. Dropout does not change the loss function, but change the
network structure itself.

That is, one can randomly disconnect some of the inputs of a specific
layer/neurons at each training cycle:

The dropout method would
reduce the dependence of the
network to some specific
neurons or weights, and hence It
will be less sensitive to the noise
and become more robust
against the overtraining.

DROPOUT (II)

® And you can find that the dropout

method is actually very helpful in terms
: .. ccu.
of against overtraining;: T
0.975 tl‘alnlng
Drop 20% of the inputs randomly o500 testing
06751 w/o dropout
from keras.layers import Dropout 1000]

0.975 A

m2 = Sequential() 0950
m2.add (Reshape((784,), input_shape=(28,28))) 7 ”gsjagsgxxzaanumsazv
m2.add(Dropout(0.2)) 0575-
m2.add(Dense(30, activation='sigmoid')) 0850 _ W/ dropout

m2.add(Dropout(0.2)) : A

m2.add(Dense(10, activation='softmax'))

m2.compile(loss="'categorical_crossentropy',
optimizer=SGD(1lr=1.0), metrics=['accuracy'])

T " 1303-example-04b.py (partial)
g 30
.y P

EARLY STOPPING

® In fact one can even think of something

super simple: why cannot we just stop
training immediately when we find the
model just becomes overtrained?

Such a scenario is usually called “Early
Stopping”. This can be achieved by
monitoring the performance of the model
during the training process, and terminate
the job when the model stop improving.

[t is usually recommended to adopt this
criteria on an independent validation
sample (not the training, nor the testing
samples!)

31

0.35

0.30 A
0.25 ~
0.20 A
0.15 ~
0.10 A
0.05 A
0.00

1.000 ~

0.975 A

0.950 A

0.925 A

0.900 A

0.875 A

0.850 ~—

Loss func.

60 80

100

A
L\ ama

Accuracy

0 20 = 40

60 80

Stop traiﬁing here?

100

FARLY STOPPING (II)

m This can be carried out by a “callback” function within Keras:

mnist = np.load('mnist.npz')
x_train = mnist['x train'][:10000]/255.

y_train = np.array([np.eye(10)[n] for n in mnist['y train'][:10000]])
x_valid = mnist['x_train'] [50000:1/255.

y_valid = np.array([np.eye(10) [n] for n in mnist['y train'][50000:11)
x_test = mnist['x_test']/255.

y_test = np.array([np.eye(10) [n] for n in mnist['y_test']])

from.keras:callbacks import EarlyStopping

rec = model.fit(x_train, y_train, epochs=100, batch_size=120,
validation data=(x_valid, y_valid),
callbacks=[EarlyStopping(monitor="'val_loss', patience=3)])

print(’ Performance (training)')

print('Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_train, y_train)))
prlnt(Performance (validation)')

print('Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_valid, y valid)))
prlnt(Performance (testing)')
print('Loss: %.5f, Acc: %.5f' % tuple(model.evaluate(x_test, y _test)))

, / 1303-example-04c.py (partial)

‘[\ | 32
T P

EARLY STOPPING (Il 7

The learning process is stopped automatically after 21 epochs:

Train on 10000 samples, validate on 10000 samples

Epoch 1/100

10000/10000 [=============] - 0s 27us/step - loss: 0.9330 - acc: 0.7552 -
val_ loss: 0.5119 - val _acc: 0.8510

Epoch 21/100

10000/10000 [=============] - 0s 21lus/step - loss: 0.0876 - acc: 0.9783 -
val_ loss: 0.2068 - val _acc: 0.9373

Performance (training)

Loss: 0.09317, Acc: 0.97770

Performance (validation) The reason to setup another validation

Loss: 0.20682, Acc: 0.93730 sample here is to keep that the testing
Performance (testing) sample always provides a unbiased
Loss: 0.21634, Acc: 0.93480 performance estimate.The validation

sample here is “used’ to decide the ending of the —
training process already. This validation setup s
also recommended for hyper parameter and

model tuning.
33
=

INTERNAL COVARIATE
SHIFT

m Internal covariate shift is a kind of problem which may shows up’
when the network goes deeper. This is due to the distributions of the
activations are always changing during training, and the training of
the intermediate layers may not be able to catch up the situation and
then slows down the learning process.

[OK, move to left...hey, it’'s too much!]

THE oS
het - % OK, move to Ieft]

OK, move to left

Hey guys, let’s make V
the queue straight! Vil

| think we should
move to left!

‘ _

Classically this can be solved by smaller

! | learning rate, but it also slows down the
— . . 34
N whole training...

BATCH NORMALIZATION-—

Wl Y\
{ . |
»
/ / -

-

W
7
=3

T

2
/]

The Batch Normalization is a method to mitigate this kind of issue.

- .. !
y .
s

o

The key idea is to normalize the inputs of each layer, try to make it
closer to a standard Gaussian (normal) distribution.

First calculate the mean 1 f: .
and variance of the input: HE —

1 m
op = ™ Z(ﬂfz — pB)°
Normalize the inputs using =1
the previously calculated batch —— _ *i = B

. . 1
statistics: OB

Then shift/scale the input:

y; = VT; + B The Y,B are trained together with
other parameters of the network.

35

BATCH NORMALIZATION 477
0 Le

® You may already observed this should also reduce the problem of
bad initial weights that we have already discussed in the previous
lecture, ie.

The batch normalization can reduce

the gradient vanishing problem, and

internal covariate shift problem; mild
improvement on the overtraining.

® Generally this method works for larger/deeper network with
sigmoid or tanh activation. But usually it is a bad idea to mix it with
dropout since dropout may interfere with the normalization

‘ calculation.
ha 36
B)

BATCH NORMALIZATION 4/
(N

m Let’s test with a larger/deeper network
like 784-128-128-128-10 and with 60

epochs of training. 1.000 m

0.975 A

training

from keras.models import Sequential 0.950 1
from keras.layers import Dense, Reshape 09251
from keras.layers import BatchNormalization 0.9007
from keras.optimizers import SGD 0.875 1

testing

w/0 Batch Normalizatiqn
0.850 T T T T T T T

0 10 20 30 40 50 60

m2 = Sequential()

m2.add(Reshape((784,), input_shape=(28,28))) ;E:_ //'—w‘v B 1
m2.add(BatchNormalization()) 0,050 -

m2.add(Dense(128, activation='sigmoid')) 0,025 |

m2.add(BatchNormalization()) 0,900 - /

m2.add(Dense(128, activation='sigmoid')) 875 1 L
m2.add(BatchNormalization()) EZZ | | w/ .Batc.h Nolrmalllzatllop
m2.add(Dense(128, activation='sigmoid')) 0 o0 30 a0 50 60
m2.add (BatchNormalization())

m2.add(Dense (10, activation='softmax'))
m2.compile(loss="'categorical_crossentropy',

IZ\ 37
.\\— _)

" 1303-example-04d.py (partial)

&
kn

As we mentioned earlier, the size of training sample does ma
With a larger training sample size, the issue of overtraining can be
mitigated. But if we cannot collect more data?

A method can still be tried is artificially increasing the training
data. This is in fact a very reasonable technique — remember in our
example the training data are just images of handwriting digits. One
can, slightly, twist or rotate the input images and it can be used as
another training sample. This will help the network to catch the
correct feature of the input images but not the small distortion nor

the local noise. N

25 4

0 0
5 5
10 - 104
5 5

20 20 -

25 4 25 -

0 5 10 15 20 25 0 5 1

38

0.975 ~

0.950 ~

AR‘ H_‘ClAL DATA / | training

EXPANDING = testing
|| W/o expanding
Let’s triple the training data by randomly I T R I
rotate the images either +5°~+425°, oo L
or —5°~-25°. Some positive effect found! iy

0.900 ~

06751 (w/ expanding

0.850 T T
0 20 40 60 80 100

from skimage.transform import rotate
extl = np.array([rotate(img,np.random.uniform(+5.,+25.)) for
img in x_train])

ext2 = np.array([rotate(img,np.random.uniform(-25.,-5.)) for
img in x_train])

X_train_ext = np.vstack([x_train,extl,ext2])

y_train_ext = np.vstack([y_train,y_train,y_train])

recl = ml.fit(x_train, y_train, epochs=100,
batch_size=120,validation_data=(x_test, y_test))

rec2 = m2.fit(x_train_ext, y_train_ext, epochs=100,
batch_size=120,validation_data=(x_test, y_test))

‘Z\ D " 1303-example-05.py (partia)
39

INTERMISSION

® We have introduced several methods to improve the learning
speed, and touched the issue of overtraining. If port (some of)
them back to the original example 1303-example-01a.py, what's
the performance you can reach by now already?

m Surely this will take a long time to run, in particular if you expand
the training data size! Be aware!

40

CAN WE
WITH THE

DO SOMETHING
“ARNING ME

m So far we are always using standard stochastic gradient descent
method with a given learning rate. Will a large /smaller learning rate
helps, or can one do something else to improve the learning?

m Let’s examine this by comparing the results with different learning

rates:

ml.compile(loss='categorical_crossentropy',
optimizer=SGD(1r=0.2))

m2 = clone_model(ml)
m2.compile(loss='categorical _crossentropy',
optimizer=SGD(1r=2.0))

m3 = clone_model(ml)
m3.compile(loss='categorical_crossentropy',
optimizer=SGD(1r=20.))

N / 1303-example-06.py (partial)
‘[\ , 4
=~

3.0 A

2.5

2.0 A

1.5 A

1.0 A

0.5 1

0.0 A

@.2

Loss func.

1r=2.0

40

60 80 100

LEARNING RAT

m Come back to the definition of the learning method itself

50 =0— VL

® The learning rate basically decide how much we should move at
each step. Too small learning rate will take a long time to train the
network (but you can already image for a super long run this might be
better!); too large rate will make the learning more likely a random
walk.

® Sometimes it might be a good idea to decrease the learning rate over
epoch and it might end up with a slightly better network, if the
network training already saturated quickly.

too small // just right! »~ too large »”~

’ /

&

:
;[\ - d 4 42
— >

KEEP THE MOMEN TUM!?

® One can imagine the training with SGD is more likely to go downbhill
in a valley. If the current direction is good (obviously going toward
lower altitude), why not to keep the MOMENTUM of your moving?

® This can be also an option within SGD algorithm to enable a
momentum based update. It might speed up the training with a
proper setup.

m Both of the options (decay of learning rate, momentum) are
supported within the framework of Keras:

Keep the
momentum!
keras.optimizers.SGD(1r=0.01, 4
momentum=0.0, decay=0.0, nesterov=False)
Note: the “nesterov” option is a kind of

improved momentum method!

. .

KEEP THE MOMENTUM? (II)

m Again, let’s try these option(s)!

m We only tested “momentum” since it can speed up of the training,
while the decay of learning rate is generally for the network fine-
tune and it is hard to see the effect

iy

0.25 A

® The loss function converges quicker
with momentum method!

0.20 A

0.15 A

0.10 A

w/o momentum

ml.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=2.0)) 17 w/ momentum

—-0.05

m2 = clone_model(ml) o 2 4 e s 100
m2.compile(loss='categorical_crossentropy', ’
optimizer=SGD(1lr=2.0, momentum=0.4))

. e 1303-example-06a.py (partial)
: 44
— _)

SIZE OF MINI-BATCH!?

|

tried to train your network with different mini-batch size!

® In principle larger mini-batch will reduce the “randomness” of the
SGD algorithm and results a smoother training, but it also suffers
from less frequent updates. But too small mini-batch will also make

your training like a random walk.

0.4 -

recl = ml.fit
batch_size=10
rec2 = m2.f1it
batch_size=30
rec3 = m3.fit(x_train, y_train, epochs=100, |
batch_size=300) 0.11 size = 10

X_train, y_train, epochs=100, .

X_train, y_train, epochs=100,

0.2 A

N N N NN

/ 1303-example-06b.py (partial) 0.0

| T
, 45
- >

DIFFERENT TRAINING
ALGORITHM?

SGD algorithm is powerful and easy to understand /implement, but
there are some issues indeed:

Only depends on the gradient calculated by the batched data.

Difficult to choose a proper learning rate, and all parameters are
learning with the same speed (only a global learning rate).

May run into a local minimum instead of the global one.

This is the reason why there are many other algorithms developed to
improve these points.

Many of these SGD variations introduce an adaptive learning rate
according to the situation of the network training.

46

DIFFERENT TRAINING
ALGORITHM? (II)

Adagrad: applying regularization to the learning rate. Larger/
smaller gradient would give smaller/larger learning rate.

Adadelta : extended Adagrad with simplification and reduced the
dependence to the global learning rate.

RMSprop: a kind of variation of Adagrad and regularization with
RMS of gradient. Good for large variant case.

Adam: a kind of variation of RMSprop + momentum. Combining the
good features of Adagrad and RMSprop.

Adamax: variation of Adam, with simplified learning rate 49
regularization formula. e

Nadam: Adam + Nesterov momentum.

47 <

DIFFERENT TRAINING
ALGORITHM? (1ll)

m In general SGD is slower but very robust with good parame

m If you want a quicker converge with a complex network, those

algorithms with adaptive learning can be better.

m With our simple network SGD actually performs very well!

ml.compile(loss="'categorical_crossentropy',
optimizer=SGD(1r=2.0))

m2 = clone_model(ml)
m2.compile(loss="'categorical_crossentropy',
optimizer=RMSprop())

m3 = clone_model(ml)
m3.compile(loss="'categorical_crossentropy’,
optimizer=Adadelta())

| / 1303-example-06c.py (partial)
li\\ 3 48
,\\- -)

0.5

0.4 4

0.3 4

0.2 1

0.1 4

0.0 A

L oss func.

Adadelta

SGD

20 40 60 80 100

D

-FERENT ACTIVATION

U

NCTION!?

Up to now we are mostly using the sigmoid function as our/
activation. The only exception is the output layer, where a softmax
function has been introduced.

A different choice is the hyperbolic tangent. It is very close to the
sigmoid function but with -1 as the tanh(z) y
non-active value instead of zero:

e* —e ~

e 1 e—?
o(z) = 1 4 tanh(z/2)

2
Using hyperbolic tangent requires a slightly different scale since the
out range becomes [-1, +1]. Some studies suggest tanh can have a
better performance in some of the cases since it has a symmetric
response.

tanh(z) =

49

DIFFERENT ACTIVATION 47
UNCTION? (1)

In fact, the most common selection of
activation function in modern network
is the rectified linear unit “ReLU”

(not the sigmoid function!), and it looks L H . 5 !
like this: —

Obviously this is very different from the sigmoid or tanh! Why this
works better than the classical choices?

R(z) =max(0, 2)

m

L

One obvious feature is that the gradient will not vanish with large
input z! This will not slow down the training speed as usually
happening for the sigmoid-like functions.

Another good feature is the ReLU function can “switch-off” subset
of the neurons with an output zero. This can reduce the overtraining
issue. But it might be hard to “switch-on” those neurons again.

50

DIFFERENT ACTIVATION)
FUNCTION? (Iil N

=
m Let’s try to compare ReLU and sigmoid activations, but with a much

larger / complicated network of 768-256-256-10 structure.

m See how good we can reach within 40 epochs of training:

Accu.

ml = Sequential() training
ml.add(Reshape((784,), input_shape=(28,28))) 0025- testing
ml.add(Dense(256, activation='sigmoid')) 0900
ml.add(Dense(256, activation='sigmoid"')) owsy | w/ sigmoid
ml.add(Dense(10, activation='softmax')) A I T R R R
ml.compile(loss="'categorical_crossentropy', 1.000 1
optimizer=SGD(1r=1.0), metrics=['accuracy']) ' ////—
m2 = Sequential() o)
m2.add(Reshape((784,), input_shape=(28,28))) l w/ ReLU
m2.add(Dense(256, activation='relu')) 0850 Ll
m2.add(Dense (256, activation='relu')) :
m2.add(Dense(10, activation='softmax')) I+ improves!
m2.compile(loss="'categorical_crossentropy',
| optimizer=SGD(1r=0.2), metrics=['accuracy'])
‘[\ﬁ " 1303-example-06d.py (partial) ‘|

DIFFERENT ACTIVATION
“UNCTION? (IV)

The Leaky ReLU or Parametric ReLU are variations of the ReLU
function to reduce the issue of “switch-off” problem (ie. when the
input stay at the “off” region, no chance to get it back...).

VAR AR

)=
" Leaky ReLU treat the

slope (&) as a fixed hyper

>

J»=0 y ., y .
fy)=ay parameter, while PReLU
include 1t as a parameter
in the training.
RelLU Leaky ReLU / PRelLU

There are few more variations of the ReLU functions, left for your
own study!

IZ\ >2

DIFFERENT ACTIVATION
“UNCTION? (V)

m Let’s replace the previous example of
using ReLU with Leaky ReLU function,

and see the resulting performance: 1000

0.975 A

v Keras those advanced activation 0.950 -

Function has to be tmported from (ayers.

m2

m2

m2 =
m2.

m2.
m2.

m2.
m2.

0.875 A

from keras. layers import LeakyRelLU 0.850
from keras.optimizers import SGD

1.000 -

0.925 ~

0.900 ~

training

//////:;::;gnmoui

testing

1;5; »

|303-examp|e-06e.py (partial)

exatm?\e.

= Sequentlal() ..
.add(Reshape((784,), input_shape=(28,28))) oos.
add(DenSE(256)) 0.900 -
add (LeakyReLU(alpha=0.1)) 0875 I W/ Leaky RelU
add(Dense(256)) 080 %o 3 40
.add(LeakyReLU(alpha=0.1))
add(Dense (10, activation='softmax')) Tk«f;resu\%s avre similay +o
compile(loss="'categorical_crossentropy',

optimizer=SGD(1r=0.2), andavd Rel.U w +his

Now finally — can we improve our network with more h1 den

neurons and /or more hidden layers?

Let’s integrated several improvements discussed up to now: Full
training sample + ReLu activation + Adadelta optimizer + Dropout +
a much larger network of 2 hidden layers of 512 neurons:

model =
mode L.
mode L.
mode L.
mode L.
model.
mode L.

mode L.

mode L.

Sequential()
add (Reshape((28%28,), input_shape=(28,28)))
add(Dense (512, activation='relu'))

add(Dropout(0.2)) .
add(Dense(512, activation='relu')) 66_|_9h|;82tworl< has
add(Dropout(0.2)) 9 parameters
add (Dense(10, activation='softmax')) to be tuned.
compile(loss='categorical_crossentropy"’,

optimizer=Adadelta(), metrics=['accuracy'l])

fit(x_train, y_train, epochs=20, batch_size=128)
- e 1303-example-07.py (partial)

54

i1)

y |

. .v |
/| A8 i

' .
5 | B
e A
' /i
= ’.

| ARGER/DEEPER NETWO R|<,2,,,
(I A

We can have a great performance of 98.5% accuracy which
to our performance from SVM with Gaussian kernel!

Epoch 20/20

60000/60000 [===========] - 5s 9lus/step - loss: 0.0065 - acc: 0.9979
Performance (training)

Loss: 0.00114, Acc: 0.99987

Performance (testing)

Loss: 0.06721, Acc: 0.98490

Can we do even better with a deeper network? e.g. adding a couple
of big layers or many smaller layers?

In fact it is not so obvious. A larger network will definitely have
much more parameters to be optimized and have a stronger
capability to describe the data, but it is definitely much more difficult
to train. In particular, a deeper network will be even harder.

55

,. &
LARGER/DEEPER NETWORKZL#7
(I .

m Let’s try several different network models and see if we
can have interesting findings?

784-(256x2)-10 784-(256x4)-10 784-(256x8)-10
train for 40 epochs train for 40 epochs train for 100 epochs

1.000 1.000 1.000

0.995 4 0.995 A 0.995 4

0.990 1 0.990 A 0.990 -1

0.985 4 0.985 A 0.985 4

0.980 1 0.980 A 0.980 1

0.975 4 0.975 A 0.975 4

||| | Ending test accuracy | |/|[| Ending test accuracy | | [| Ending test accuracy
"1 || 98.4% 1] 98.4% 1| 98.5%

A more complex network does require a longer training time.
f Why it is difficult to train a deeper network?
—y P

56

WHY IT IS DIFFICULTTO 477
TRAIN A DEEP NETWORK? A5

m Surely a deeper network does contain much more weights/bias to be
tuned. But this is not the only reason — vanishing gradients with a
deeper network. Small gradients = slow learning.

® Let’s consider a chain of neurons and calculate the gradient

according to back propagation: oL OL
8—[)4 — O'/(Z4) . 8_y
@ w3 ok output
OL , OL

=0'(21) - wa - 0'(22) w3 - ' (23) - wy - 0" (24) -

by Ay

Generally the weights are small (<1) after training, and o’(z) is less

then 0.25 by definition, if the sigmoid function is used. This will

enforce 9L < 0.()1568_1’ The updating on by will be

‘Z\ 0b1 0by much slower than ba.

57

WHY [T IS DIFFICULT TO
TRAIN A DEEP NETWORK? (H) &

And this is not the full story. The small ¢’(z) is not a problem for
ReLU activation. However, if we have large weights, say >> 1, the
gradient will become very large when network goes deeper. Then we
are going to have an exploding gradient problem instead.

The intrinsic problem is that the gradients are unstable with deeper
network, given they are evaluated with a production of many layers
of weights and derivatives.

In fact such unstable gradient problem is a complex issue and
depending one many other factor (and hyperparameters) as well.
Although it sounds difficult to get a decent deep network trained,
but one can, still get a better performing deep network, with a
different network structure.

58

HANDS-ON SESSION

Practice 01:

Trial #1:

In the 1303-example-04a.py we have tried a L2 regularization
method to reduce the overtraining issue. What will be the
situation if we switched to L1 regularization?

59

HANDS-ON SESSION

Practice 02:

Up to now we are always using the same testing sample to measure
the performance. But what will happen if we rotate our testing data
and see how good we can still separate the handwriting digits?

You can take one of the ending example, e.g. 1303-examp le-08. py
or 1303-example-08a. py, train your network, but in the end use
the rotated test sample to see the performance. The method /code to
rotate your images can be found in 1303-examp le-05. py.

Performance (training):
Loss: 0.xxxx, Acc: 0.yyyy
Performance (testing):
Loss: 0.xxxx, Acc: 0.yyyy

60

