# INTRODUCTION TO NUMERICAL ANALYSIS

#### Tournament

Kai-Feng Chen National Taiwan University

## ALLYOU NEED TO KNOW

- We have the video game tournament!
- And we are going to play a not-so-classical **space invaders**.
- All you need to do is derive a good AI program to control your space battleship, hide from the attacks, and shoot those invaders down!
- We are going to run this tournament with pair of groups and who gets higher scores who win!





#### COORDINATION SYSTEM

The invaders are basically falling from top

player's battleship are limited to move within this square



The maximum moving speed of your battleship is **0.01 unit per unit time frame** (as well as the invaders)

Your code needs to provide the speed scale (0.0–1.0) and the direction (0.0–2π) for every time frame



#### TYPES OF THREATS



#### RANGE ATTACK



If your battleship moves slower (speed scale<1), the "energy gauge" can be accumulated. The amount of energy accumulation is 4\*(1 – speed scale).

- When it is full (value = 1000), it will shoot an EMP bomb of maximum radius of 0.54.
- The EMP bomb will destroy any enemies within the ring (including the bullets), except the boss!
- However it also has some negative effects to your "friend"!

## NEW SINCE VERSION 1.2



type 6: "Super UFO" moving vertically / HP 120+ / speed = 0.1x / 4x shooting rate / 10 points per hit

#### BOSS FIGHT WITH GIANT "SUPER UFO" BEFORE LEVEL UP!!

## NEW SINCE VERSION 1.3



- type 7: "Rescue capsule" moving vertically / speed = 0.2x / restore 1 HP (maximum HP=12)
- type 8: "Weapon upgrade" moving vertically / speed = 0.2x / upgrade your weapon by I level (maximum level=3)

If you get a hit, your weapon level will be downgraded as well!

#### PLAYER AITEMPLATE

import numpy as np

The **decision function** will be called by the main program **every frame** and you need to return the speed scale and direction of your movement.

class player\_module:

# Decision making function for moving your ship, toward next frame:
# simply return the speed and the angle
def decision(self,player\_data, enemy\_data): < the main decision function</pre>

player\_template.py

def decision(self,player\_data, enemy\_data): speed, angle = 0, 0.  $\leftarrow$  the information to be replied: speed scale (0 to 1), and the direction (0 to  $2\pi$ ) # your data Note the demo code only moves left & right, = player\_data[0][0] player1\_x but you can actually move toward any direction. player1\_y = player\_data[0][1] player1\_hp = player\_data[0][2]  $\Leftarrow$  your current data (coordination, HP, etc) player1\_score = player\_data[0][3] Note you are always the "player I" here. player1\_gauge = player\_data[0][4] player1\_weapon = player\_data[0][5] # data for another player player2\_x = player\_data[1][0]
player2\_y = player\_data[1][1]
player2\_hp = player\_data[1][2] 
player2\_score = player\_data[1][3] player2\_gauge = player\_data[1][4] player2\_weapon = player\_data[1][5] # loop over the enemies and bullets for data in enemy\_data: type = data[0] = data[1] Х  $\Leftarrow$  invader's information (including bullets) = data[2] У dx = data[3]dy = data[4] player template.py

#### HAVE FUN!

- Who gets more scores in the end win!
- We will have two rounds of tournament:
  - **Round match**: will reduce the # of players
     by half, the rest players enter the final match.
  - Final match: elimination game (targeting your championship!).
  - Anyone who enters the final match (≤~50% of participants) will get a level upgrade to your final score of this course!
- Please provide the first version of your code on May/18 for the first round; the final match will be held on June/01 (with your final code).



Game level up with higher scores, but with more enemies...