
PROGRAMMING &
NUMERICAL ANALYSIS
Lecture 11:
Solving Differential Equations

1

Kai-Feng Chen
National Taiwan University

2016

WORK OF “PHYSICISTS”

■ Solving the differential equations is probably one of your most
“ordinary” work when you study the classical mechanics?

■ Many differential equations in nature cannot be solved analytically
easily; however, in many of the cases, a numeric approximation to
the solution is often good enough to solve the problem. You will
see several examples today.

■ In this lecture we will discuss the numerical methods for finding
numerical approximations to the solutions of ordinary differential
equations, as well as how to demonstrate the “motions” with an
animation in matplotlib.

2

WORK OF “PHYSICISTS” (II)

3

■ Let’s get back to our “lovely” F=ma equations!

THE BASIS:
A BRAINLESS EXAMPLE
■ Let's try to solve such a (mostly) trivial differential equation:  
 
 

■ You should know the obvious solution is –– y = exp(t)

4

dy

dt
= f(y, t) = y

with the initial condition:  
t = 0, y = 1

dy

dt
= f(y, t) Actually, this is the general form of any

first-order ordinary differential equation.
In general, it can be very complicated, but it's still
a 1st order ODE, e.g.

dy

dt
= f(y, t) = y3 · t2 + sin(t+ y) +

p
t+ y

THE NUMERICAL
SOLUTION
■ Here are the minimal algorithm –– integrate the differential

equation by one step in t:

5

dy

dt
= f(y, t)

y(tn+1)� y(tn)

h
= f(y, tn) yn+1 ⇡ yn + h · f(yn, tn)

For our trivial example: yn+1 ⇡ yn + h · yn
dy

dt
= y

current stepnext step

This is the classical Euler algorithm (method)

EULER ALGORITHM

■ A more graphical explanation is as like this:

6

t

y

×

tn tn+1

×
yn+1 ⇡ yn + h · f(yn, tn)

yn

h

f(yn, tn)
Slope: The precision of this Euler

algorithm is only up to O(h)
since:

For every step the precision is of
O(h2); after N~O(1/h) steps the
precision is O(h).

EULER ALGORITHM (II)
■ Let’s prepare a simple code to see how it works:

7

import math

def f(t,y): return y

t, y = 0., 1.
h = 0.001

while t<1.:
 k1 = f(t, y)
 y += h*k1
 t += h

y_exact = math.exp(t)
print 'Euler method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact))

l11-example-01.py

Euler method: 2.7169239322358960,  
exact: 2.7182818284590469,  
diff: 0.0013578962231509

 ⇐ Initial conditions (t = 0, y = 1)
 ⇐ stepping in t

 ⇐ the given f(y,t) function

 ⇐ Indeed the precision is of O(h)

SECOND ORDER
RUNGE-KUTTA METHOD
■ Surely one can introduce a similar trick of error reduction we have

played though out the latter half of the semester.

■ Here comes the Runge-Kutta algorithm for integrating differential
equations, which is based on a formal integration:

8

dy

dt
= f(y, t)

y(t) =

Z
f(t, y)dt

yn+1 = yn +

Z tn+1

tn

f(t, y)dt

Expand f(t,y) in a Taylor series around

Something smells familiar?

(t, y) = (tn+ 1
2
, yn+ 1

2
)

f(t, y) = f(tn+ 1
2
, yn+ 1

2
) + (t� tn+ 1

2
) · df

dt
(tn+ 1

2
) +O(h2)

SECOND ORDER
RUNGE-KUTTA METHOD (II)

9

Insert the expansion
into the integration:

Linear (first order) term must be cancelled

It’s just a number (slope)!

Insert the integral back:

If one knows the solution half-step in the future –– the
O(h2) term can be cancelled. BUT HOW?

f(t, y) = f(tn+ 1
2
, yn+ 1

2
) + (t� tn+ 1

2
) · df

dt
(tn+ 1

2
) +O(h2)

Z tn+1

tn

f(t, y)dt =

Z tn+1

tn

f(tn+ 1
2
, yn+ 1

2
)dt+

Z tn+1

tn

(t� tn+ 1
2
) · df

dt
(tn+ 1

2
) dt+ ...

Z tn+1

tn

f(t, y)dt ⇡ h · f(tn+ 1
2
, yn+ 1

2
)

yn+1 ⇡ yn + h · f(tn+ 1
2
, yn+ 1

2
) +O(h3)

SECOND ORDER
RUNGE-KUTTA METHOD (III)
■ The trick: use the Euler’s method to solve half-step first, starting

from the given initial conditions:

10

t

y

×

tn tn+1

×

h

× yn+1
yn

yn+ 1
2

f(yn, tn)

f(yn+ 1
2
, tn+ 1

2
)

Slope: {yn+ 1
2
= yn +

h

2
f(tn, yn)

tn+ 1
2
= t+

h

2
yn+1 ⇡ yn + h · f(tn+ 1

2
, yn+ 1

2
)

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
· k1)

yn+1 ⇡ yn + h · k2 +O(h3)
{

Explicit formulae

t, y = 0., 1.
h = 0.001

while t<1.:
 k1 = f(t, y)
 k2 = f(t+0.5*h, y+0.5*h*k1)
 y += h*k2
 t += h

y_exact = math.exp(t)
print 'RK2 method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact))

IMPLEMENTATION OF “RK2”
■ The coding is actually extremely simple:

11

l11-example-02.py

RK2 method: 2.7182813757517628, 
exact: 2.7182818284590469,  
diff: 0.0000004527072841

 ⇐ Initial conditions and stepping (t = 0, y = 1, h = 0.001)

 ⇐ use Euler method to solve half-step

 ⇐ full step jump

For every step the precision is of
O(h3); after N steps the
precision is O(h2).

RK2 solver

FOURTH ORDER
RUNGE-KUTTA
■ The 4th order Runge-Kutta method provides an excellent balance

of power, precision, and programming simplicity. Using a similar
idea of the 2nd order version, one could have these formulae:

12

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
· k1)

k3 = f(tn +
h

2
, yn +

h

2
· k2)

k4 = f(tn + h, yn + h · k3)

yn+1 ⇡ yn +
h

6
· (k1 + 2k2 + 2k3 + k4) +O(h5)

{
Basically the 4th order
Runge-Kutta has a precision
of O(h5) at each step, an
over all O(h4) precision.

Actually, the RK4 is a variation of
Simpson's method...

IMPLEMENTATION OF “RK4”
■ The RK4 routine is not too different from the previous RK2 code!

13

t, y = 0., 1.
h = 0.001

while t<1.:
 k1 = f(t, y)
 k2 = f(t+0.5*h, y+0.5*h*k1)
 k3 = f(t+0.5*h, y+0.5*h*k2)
 k4 = f(t+h, y+h*k3)
 y += h/6.*(k1+2.*k2+2.*k3+k4)
 t += h

y_exact = math.exp(t)
print 'RK2 method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact)) l11-example-03.py

RK4 method: 2.7182818284590247, 
exact: 2.7182818284590469,  
diff: 0.0000000000000222

 ⇐ The same initial conditions & stepping

 ⇐ Simply calculate k1~k4 in a sequence

 ⇐ Jump to the next step

 ⇐ Precision is of O(h4)!

RK4 solver

PRECISION
EVOLUTION
■ Let’s write a small

code to demonstrate
the “precision” of the
solution as it evolves.

■ You should be able to
see the
“accumulation” of
numerical errors.

14

vt = np.zeros(200)
vy = np.zeros((4,200))

t = 0.
y1 = y2 = y4 = 1.
h = 0.001

for idx in range(200):
 for step in range(1000):
 k1 = f(t, y1)
 y1 += h*k1

 k1 = f(t, y2)
 k2 = f(t+0.5*h, y2+0.5*h*k1)
 y2 += h*k2

 k1 = f(t, y4)
 k2 = f(t+0.5*h, y4+0.5*h*k1)
 k3 = f(t+0.5*h, y4+0.5*h*k2)
 k4 = f(t+h, y4+h*k3)
 y4 += h/6.*(k1+2.*k2+2.*k3+k4)

 t += h

 vt[idx] = t
 vy[0,idx] = np.exp(t)
 vy[1,idx] = y1
 vy[2,idx] = y2
 vy[3,idx] = y4 partial l11-example-04.py

 ⇐ NumPy arrays for  
storing the output

 ⇐ Store the results

 Only keep the result
⇙ every 1000 steps.

RK4

RK2

Euler method

PRECISION
EVOLUTION (II)
■ Just make a simple plot.

■ The initial uncertainties are
of O(h), O(h2), and O(h4).

■ After 200,000 steps or more,
the accumulated errors can
be large.

15

plt.plot(vt,abs(vy[1]-vy[0])/vy[0],lw=2,c='Blue')
plt.plot(vt,abs(vy[2]-vy[0])/vy[0],lw=2,c='Green')
plt.plot(vt,abs(vy[3]-vy[0])/vy[0],lw=2,c='Red')
plt.yscale('log')
plt.ylim(1E-16,0.2)
plt.xlim(0.,200.)
plt.show()

partial l11-example-04.py

 ⇑ Draw the relative differences

Euler

RK2

RK4

INTERMISSION

■ It could be interesting to solve some other trivial differential
equations with the methods introduced above, for example:  
 
 
 

■ Try to modify the previous example code (l11-example-04.py) and
see how the error accumulated along with steps for a different
differential equation.

16

dy

dt
= �y

dy

dt
= cos(t)

A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM

17

θ

R

m

mg

mg sinθ

mR
d2✓

dt2
= �mg sin ✓F = ma

d2✓

dt2
= � g

R
sin ✓

Solving 2nd order ODE =
Decompose into two
1st order ODE:

d✓̇

dt
= f(✓, ✓̇, t) = � g

R
sin ✓

d✓

dt
= g(✓, ✓̇, t) = ✓̇

.... (1)

.... (2)

A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM (II)

18

θ = 0.9999 π

R = 1m

m = 1kg

g = 9.8m/s2

With a trial Initial condition 
at t = 0 :

{
Almost at the largest possible angle
(No small angle approximation!  
Not a “simple” pendulum)
Standstill at the beginning.

In principle it should stand for a moment, and
start to falling down...

✓ = 0.9999⇡ ⇡ 3.141278...

✓̇ = 0

SOLVE FOR 2 ODE’S
TOGETHER

19

m, g, R = 1., 9.8, 1.
t, h = 0., 0.001
y = np.array([np.pi*0.9999,0.])

def f(t,y):
 theta = y[0]
 thetap = y[1]
 thetapp = -g/R*np.sin(theta)

 return np.array([thetap,thetapp])

while t<8.:
 for step in range(100):
 k1 = f(t, y)
 y += h*k1
 t += h

 theta = y[0]
 thetap = y[1]
 print 'At %.2f sec : (%+14.10f, %+14.10f)' % (t, theta, thetap)

l11-example-05.py

 ⇐ Initial condition t = 0 sec, stepping = 0.001 sec.
 ⇐ Initial θ and θ’

 ⇐ input array contains θ and θ’

 ⇐ output array contains θ’ and θ’’

 ⇐ solve for 100 steps (=0.1 sec)

 ⇐ Euler method

SOLVE FOR 2 ODE’S
TOGETHER (II)

■ The terminal
output:

■ Works, but not so
straight forward...

20

At 0.10 sec : (+3.1412631358, -0.0003127772)
At 0.20 sec : (+3.1412152508, -0.0006561363)
At 0.30 sec : (+3.1411301423, -0.0010639557)
At 0.40 sec : (+3.1409994419, -0.0015764466)
At 0.50 sec : (+3.1408102869, -0.0022441174)
... ...

At 1.00 sec : (+3.1380085436, -0.0111772696)
... ...

At 1.50 sec : (+3.1245199136, -0.0534365650)
... ...

At 2.00 sec : (+3.0601357015, -0.2549284063)
... ...

At 2.50 sec : (+2.7540224966, -1.2057243644)
... ...

At 3.00 sec : (+1.4037054845, -4.7826081916)
... ...

At 4.00 sec : (-2.7787118486, -1.1997994809)
... ...

At 5.00 sec : (-3.3781806892, -0.8411792354)
... ...

✓̇ #✓ #

Let’s introduce some
animations to

demonstrate the motion!

 ⇖ wait, θ<–π!?

SIMPLE ANIMATION

■ It is easy to create animations with matplotlib. It is useful to
demonstrate some of the results that suppose to “move” as a
function of time!

■ Here are a very simple example code to show how it works!

21

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

fig = plt.figure(figsize=(6,6), dpi=80)
ax = plt.axes(xlim=(-1.,+1.), ylim=(-1.,+1.))

curve, = ax.plot([], [], lw=2, color='red')

partial l11-example-06.py ⇑ initial empty object(s)

 ⇐ initial figure/axis

 ⇐ import animation package

SIMPLE ANIMATION (II)

■ The “core ” part of the code:

22

def init():
 curve.set_data([], [])
 return curve,

def animate(i):
 t = np.linspace(0.,np.pi*2.,400)
 x = np.cos(t*6.)*np.cos(t+2.*np.pi*i/360.)
 y = np.cos(t*6.)*np.sin(t+2.*np.pi*i/360.)

 curve.set_data(x, y)
 return curve,

anim = animation.FuncAnimation(fig, animate,
 init_func=init, frames=360, interval=40)
plt.show()

partial l11-example-06.py

This is the
output:

 ⇖ update the data for frame index = i
 (i is not an essential piece, it’s just a counter)

 ⇐ initial frame, all set to empty
 ⇐ have to return a tuple

Initial an animation of total 360 frame ⇖⇑ 
with 40 mini-sec wait interval (=25 FPS)

SOLVING ODE X
ANIMATION
■ “Merge” two previous codes as following:

23

fig = plt.figure(figsize=(6,6), dpi=80)
ax = plt.axes(xlim=(-1.2,+1.2), ylim=(-1.2,+1.2))

stick, = ax.plot([], [], lw=2, color='black')
ball, = ax.plot([], [], 'ro', ms=10)
text = ax.text(0.,1.1,'', fontsize = 16, color='black',
 ha='center', va='center')

m, g, R = 1., 9.8, 1.
t, h = 0., 0.001
y = np.array([np.pi*0.9999,0.])

def f(t,y):
 theta = y[0]
 thetap = y[1]
 thetapp = -g/R*np.sin(theta)

 return np.array([thetap,thetapp]) partial l11-example-05a.py

 ⇖ initial empty objects:

 ⇐ Initial θ and θ’

 ⇐ function for calculating θ’ and θ’’

def animate(i):
 global t,y

 for step in range(40):
 k1 = f(t, y)
 y += h*k1
 t += h

 theta = y[0]
 thetap = y[1]
 bx = np.sin(theta)
 by = -np.cos(theta)
 ball.set_data(bx, by)
 stick.set_data([0.,bx], [0.,by])

 E = m*g*by + 0.5*m*(R*thetap)**2
 text.set(text='E = %.16f' % E)

 return stick, ball, text

anim = animation.FuncAnimation(fig, animate, init_func=init,
 frames=10, interval=40)

SOLVING ODE X
ANIMATION (II)
■ Core animation + solving ODE:

24
partial l11-example-05a.py

 ⇐ force t and y to be global variables

 ⇐ solve 40 steps  
(0.04 sec per frame)

 ⇐ plot the “ball” and “stick”

 ⇐ show the total energy

 ⇖“ball”

 ⇐“stick”

“text”⇑

DEMO TIME!
■ It moves! But you will find the solver does not work too good

almost immediately; the energy is not even conserved!

25

t = 0.5 sec t = 1.0 sec t = 1.5 sec t = 2.0 sec t = 2.5 sec

t = 3.0 sec t = 3.5 sec t = 4.0 sec t = 4.5 sec t = 5.0 sec

THAT’S WHY WE NEED A
BETTER ODE SOLVER...
■ One can simply replace the core part of the code to “upgrade” the

ODE solutions.

26

 for step in range(40):
 k1 = f(t, y)
 k2 = f(t+0.5*h, y+0.5*h*k1)
 k3 = f(t+0.5*h, y+0.5*h*k2)
 k4 = f(t+h, y+h*k3)
 y += h/6.*(k1+2.*k2+2.*k3+k4)
 t += h

partial l11-example-05c.py

 for step in range(40):
 k1 = f(t, y)
 k2 = f(t+0.5*h, y+0.5*h*k1)
 y += h*k2
 t += h

partial l11-example-05b.py

RK2

RK4
This RK4 routine will not

easily break the total energy
cap easily at least.

USING THE ODE SOLVER
FROM SCIPY
■ The ODE solver under SciPy is also available in scipy.integrate

module, together with the numerical integration tools:

27

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

USING THE ODE SOLVER
FROM SCIPY (II)

28

 import numpy as np
 from scipy.integrate import ode

 m, g, R = 1., 9.8, 1.
 t, y = 0., np.array([np.pi*0.9999,0.])

 def f(t,y):
 theta = y[0]
 thetap = y[1]
 thetapp = -g/R*np.sin(theta)
 return np.array([thetap,thetapp])

 intr = ode(f).set_integrator('dop853')
 intr.set_initial_value(y, t)

 while intr.t<8.:
 intr.integrate(intr.t+0.1)

 theta = intr.y[0]
 thetap = intr.y[1]
 print 'At %.2f sec : (%+14.10f, %+14.10f)' \
 % (intr.t, theta, thetap)

l11-example-07.py

 ⇐ exactly the same f(x,y)

 ⇐ now t and y are
just initial conditions

 ⇐ import the module

 ⇐ initialize the ode class
with ‘dop853’ integrator

 ⇐ solve to current time + 0.1 sec

USING THE ODE SOLVER
FROM SCIPY (III)

■ It’s simply working
smoothly.

■ There are few more
different integrator
available in the scipy
ode class, e.g.
“vode”, “zvode”, etc.

■ Please read the
manual for details.

29

At 0.10 sec : (+3.1412629744, -0.0003129294)
At 0.20 sec : (+3.1412148812, -0.0006567772)
At 0.30 sec : (+3.1411294629, -0.0010655165)
At 0.40 sec : (+3.1409982801, -0.0015795319)
At 0.50 sec : (+3.1408083714, -0.0022496097)
... ...

At 1.00 sec : (+3.1379909749, -0.0112320574)
... ...

At 1.50 sec : (+3.1243942321, -0.0538299284)
... ...

At 2.00 sec : (+3.0593354818, -0.2574312087)
... ...

At 2.50 sec : (+2.7492944690, -1.2202273084)
... ...

At 3.00 sec : (+1.3819060253, -4.8249634626)
... ...

At 4.00 sec : (-2.7713127817, -1.1525482114)
... ...

At 5.00 sec : (-3.1253649922, -0.0507902190)
... ...

✓̇ #✓ #

USING THE ODE SOLVER
FROM SCIPY (IV)
■ It’s also pretty easy to

merge the ODE solver
with animation.

30

 m, g, R = 1., 9.8, 1.
 t = 0.
 y = np.array([np.pi*0.9999,0.])

 def f(t,y):
 theta = y[0]
 thetap = y[1]
 thetapp = -g/R*np.sin(theta)

 return np.array([thetap,thetapp])

 intr = ode(f).set_integrator('dop853')
 intr.set_initial_value(y, t)

 def animate(i):
 intr.integrate(intr.t+0.040)

 theta = intr.y[0]
 thetap = intr.y[1]

partial l11-example-07a.py

Initial the integrator

Replace the for-loop
with a single commend

INTERMISSION

■ What will happen if you given a critical initial condition to the
preview simple pendulum example, e.g.

■ It could be fun if you can try to record the angle versus time (this
can be done by a small modification to l11-example-07.py), and
make a plot. If you set the initial condition to a small angle (when
the small angle approximation still works), will you see if your
solution close to a sine/cosine function?

31

✓ = ⇡

✓̇ = 0

FEW MORE EXAMPLES FOR
YOUR AMUSEMENT
■ Replace the “stick” with a spring:

32

�mgĵ

(x, y)

f

x

= f · x
R

î

f

y

= f · y
R

ĵ

f = �k(R�R0)

R =
p

x

2 + y

2

R0 = 0.5m

m = 1kg

g = 9.8m/s2

k = 100 N/m

See  
l11-example-08.py

Coordinate (x,y) is used
instead of (R,θ) here.

Need to solve 4 equations 
(x,y,vx,vy) simultaneously

ONE IS COOL,
TWO ARE CHAOTIC?
■ A joint two-spring-ball system:

33

�mgĵ

See  
l11-example-08a.py

(x1, y1)

(x2, y2)

�mgĵ

f2 = �k(R2 �R0) ·

(x2 � x1)

R2
î,

(y2 � y1)

R2
ĵ

�

f1 = �k(R1 �R0) ·

x1

R1
î,

y1

R1
ĵ

�

m = 1kg

k = 200 N/m
R0 = 0.3m

Need to solve 8 equations 
simultaneously

A CHAIN OF SPRING-BALL =
A ROPE?
■ If we replace the “stick” with a rope, is it possible? Surely we need

to use a simplified model to mimic a rope.

34

M = 1kg

mRope = 0.1kg
R0 = 1m / Nseg

M = 1kg�mgĵ

m = 0.1kg / Nseg

k = 1000*Nseg N/m
Nseg = 50

See  
l11-example-08b.py

�Mgĵ

fi = �k�Ri ·
✓
�xi

Ri
î,

�yi

Ri
ĵ

◆

of equations:  
Nseg * 4 = 200

WAVE ON A STRING

■ Actually one can use a similar way to model a string –– construct a
N segment (massive) string and solve it with small angle
approximation.

35

dy1

dx

dy2

T = 1 N

dm

fi ⇡ T · (dy1
dx

+
dy2

dx

)

L = 1 m
M = 1 kg

Set the initial condition to be
simple sine waves and solve

for the wave!

v =

s
T

µ
=

r
TL

M
= f · �

See  
l11-example-09.py

WAVE ON A STRING (II)

■ It is also fun to record the vibration of the string, convert it to a
wave file and play it out!

36

For the case of T = 400 N, μ= 0.01 kg/m, λ= 1m,  
we are expecting to hear a 200 Hz sound! See  

l11-example-09a.py

COMMENTS

■ We have demonstrated several interesting examples, surely you
are encouraged to modify the code and test some different physics
parameters, or different initial conditions.

■ Basically all of those tasks can be easily done with the given ODE
solver. In any case these are examples are VERY PHYSICS!

■ Then – you may want to ask – how about PDEs? The general idea
of PDE solving is similar but require some different
implementations. There is no PDE solver available in SciPy yet. If
you want, you can try the following packages: 

FiPy http://www.ctcms.nist.gov/fipy/ 
SfePy http://sfepy.org/doc-devel/index.html

37

http://www.ctcms.nist.gov/fipy/
http://sfepy.org/doc-devel/index.html

HANDS-ON SESSION

■ Practice 1:  
Add some simple gravity to the system:  
there is a red star shooting toward the
earth. Assuming the only acceleration
between the earth and the red star is
contributed by the gravitational force:  
 
 
with G×M = 1. Thus: 
 
 
implement the code and produce the
animation.

38

(0,0)
M

m
v0 = (1.0,0.5)

x0 = (-1.,-1.)

F =
GMm

r2
a = 1/r2

a =
dv

dt
= F/m =

1

r2

HANDS-ON SESSION

■ Practice 2:  
damped or driven oscillators – please solve the following system
with the extra (damping/driving) force and the given physics
parameters.

39

m

x

k = 10 N/m

0

m = 1 kg

Initial condition: t = 0 sec, x = +0.1 m
b = 0.2 Ns/m

d = 0.08 N
ω = π rad/s

fb = �b · dx
dt

or

fd = d · cos(!t)
or

fd = d · sin(!t)

fb or fd

HANDS-ON SESSION

■ Please start with the given template on CEIBA. It can produce the
following plots if you solve them correctly.

40

fb = �b · dx
dt

fd = d · cos(!t) fd = d · sin(!t)

You may also play around with some what different
physics parameters as well as the initial conditions.

