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WORK OF “PHYSICISTS”

■ Solving the differential equations is probably one of your most 
“ordinary” work when you study the classical mechanics?

■ Many differential equations in nature cannot be solved analytically 
easily; however, in many of the cases, a numeric approximation to 
the solution is often good enough to solve the problem. You will 
see several examples today.

■ In this lecture we will discuss the numerical methods for finding 
numerical approximations to the solutions of ordinary differential 
equations, as well as how to demonstrate the “motions” with an 
animation in matplotlib.
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WORK OF “PHYSICISTS” (II)
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■ Let’s get back to our “lovely” F=ma equations!



THE BASIS:  
A BRAINLESS EXAMPLE
■ Let's try to solve such a (mostly) trivial differential equation:  
 
 

■ You should know the obvious solution is –– y = exp(t)
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dy

dt
= f(y, t) = y

with the initial condition:  
t = 0, y = 1

dy

dt
= f(y, t) Actually, this is the general form of any 

first-order ordinary differential equation. 
In general, it can be very complicated, but it's still
a 1st order ODE, e.g.

dy

dt
= f(y, t) = y3 · t2 + sin(t+ y) +

p
t+ y



THE NUMERICAL 
SOLUTION
■ Here are the minimal algorithm –– integrate the differential 

equation by one step in t: 
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dy

dt
= f(y, t)

y(tn+1)� y(tn)

h
= f(y, tn) yn+1 ⇡ yn + h · f(yn, tn)

For our trivial example: yn+1 ⇡ yn + h · yn
dy

dt
= y

current stepnext step

This is the classical Euler algorithm (method)



EULER ALGORITHM

■ A more graphical explanation is as like this: 
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t

y

×

tn tn+1

×
yn+1 ⇡ yn + h · f(yn, tn)

yn

h

f(yn, tn)
Slope: The precision of this Euler 

algorithm is only up to O(h) 
since:

For every step the precision is of 
O(h2); after N~O(1/h) steps the 
precision is O(h).



EULER ALGORITHM (II)
■ Let’s prepare a simple code to see how it works:
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import math
 

def f(t,y): return y
 

t, y = 0., 1.
h = 0.001
 

while t<1.:
    k1  = f(t, y)
    y  += h*k1
    t  += h
 

y_exact = math.exp(t)
print 'Euler method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact))

l11-example-01.py

Euler method: 2.7169239322358960,  
exact:        2.7182818284590469,  
diff:         0.0013578962231509

  ⇐ Initial conditions (t = 0, y = 1)
  ⇐ stepping in t

  ⇐ the given f(y,t) function

  ⇐ Indeed the precision is of O(h)



SECOND ORDER  
RUNGE-KUTTA METHOD
■ Surely one can introduce a similar trick of error reduction we have 

played though out the latter half of the semester.

■ Here comes the Runge-Kutta algorithm for integrating differential 
equations, which is based on a formal integration: 
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dy

dt
= f(y, t)

y(t) =

Z
f(t, y)dt

yn+1 = yn +

Z tn+1

tn

f(t, y)dt

Expand f(t,y) in a Taylor series around 

Something smells familiar?

(t, y) = (tn+ 1
2
, yn+ 1

2
)

f(t, y) = f(tn+ 1
2
, yn+ 1

2
) + (t� tn+ 1

2
) · df

dt
(tn+ 1

2
) +O(h2)



SECOND ORDER  
RUNGE-KUTTA METHOD (II)
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Insert the expansion 
into the integration: 

Linear (first order) term must be cancelled

It’s just a number (slope)!

Insert the integral back:

If one knows the solution half-step in the future –– the 
O(h2) term can be cancelled. BUT HOW?

f(t, y) = f(tn+ 1
2
, yn+ 1

2
) + (t� tn+ 1

2
) · df

dt
(tn+ 1

2
) +O(h2)

Z tn+1

tn

f(t, y)dt =

Z tn+1

tn

f(tn+ 1
2
, yn+ 1

2
)dt+

Z tn+1

tn

(t� tn+ 1
2
) · df

dt
(tn+ 1

2
) dt+ ...

Z tn+1

tn

f(t, y)dt ⇡ h · f(tn+ 1
2
, yn+ 1

2
)

yn+1 ⇡ yn + h · f(tn+ 1
2
, yn+ 1

2
) +O(h3)



SECOND ORDER  
RUNGE-KUTTA METHOD (III)
■ The trick: use the Euler’s method to solve half-step first, starting 

from the given initial conditions:
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t

y

×

tn tn+1

×

h

× yn+1
yn

yn+ 1
2

f(yn, tn)

f(yn+ 1
2
, tn+ 1

2
)

Slope: {yn+ 1
2
= yn +

h

2
f(tn, yn)

tn+ 1
2
= t+

h

2
yn+1 ⇡ yn + h · f(tn+ 1

2
, yn+ 1

2
)

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
· k1)

yn+1 ⇡ yn + h · k2 +O(h3)
{

Explicit formulae



t, y = 0., 1.
h = 0.001
 

while t<1.:
    k1  = f(t, y)
    k2  = f(t+0.5*h, y+0.5*h*k1)
    y  += h*k2
    t  += h
 

y_exact = math.exp(t)
print 'RK2 method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact))

IMPLEMENTATION OF “RK2”
■ The coding is actually extremely simple:
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l11-example-02.py

RK2 method:   2.7182813757517628, 
exact:        2.7182818284590469,  
diff:         0.0000004527072841

  ⇐ Initial conditions and stepping (t = 0, y = 1, h = 0.001)

  ⇐ use Euler method to solve half-step

  ⇐ full step jump

For every step the precision is of 
O(h3); after N steps the 
precision is O(h2).

RK2 solver



FOURTH ORDER 
RUNGE-KUTTA
■ The 4th order Runge-Kutta method provides an excellent balance 

of power, precision, and programming simplicity. Using a similar 
idea of the 2nd order version, one could have these formulae:

12

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
· k1)

k3 = f(tn +
h

2
, yn +

h

2
· k2)

k4 = f(tn + h, yn + h · k3)

yn+1 ⇡ yn +
h

6
· (k1 + 2k2 + 2k3 + k4) +O(h5)

{
Basically the 4th order 
Runge-Kutta has a precision 
of O(h5) at each step, an
over all O(h4) precision. 

Actually, the RK4 is a variation of 
Simpson's method...



IMPLEMENTATION OF “RK4”
■ The RK4 routine is not too different from the previous RK2 code!
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t, y = 0., 1.
h = 0.001
 

while t<1.:
    k1  = f(t, y)
    k2  = f(t+0.5*h, y+0.5*h*k1)
    k3  = f(t+0.5*h, y+0.5*h*k2)
    k4  = f(t+h, y+h*k3)
    y  += h/6.*(k1+2.*k2+2.*k3+k4)    
    t  += h
 

y_exact = math.exp(t)
print 'RK2 method: %.16f, exact: %.16f, diff: %.16f' % \
(y,y_exact,abs(y-y_exact)) l11-example-03.py

RK4 method:   2.7182818284590247, 
exact:        2.7182818284590469,  
diff:         0.0000000000000222

  ⇐ The same initial conditions & stepping 

  ⇐ Simply calculate k1~k4 in a sequence

  ⇐ Jump to the next step

  ⇐ Precision is of O(h4)!

RK4 solver



PRECISION 
EVOLUTION
■ Let’s write a small 

code to demonstrate 
the “precision” of the 
solution as it evolves.

■ You should be able to 
see the 
“accumulation” of 
numerical errors. 
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vt = np.zeros(200)
vy = np.zeros((4,200))
 

t = 0.
y1 = y2 = y4 = 1.
h = 0.001
 

for idx in range(200):
    for step in range(1000):
        k1  = f(t, y1)
        y1 += h*k1    
 

        k1  = f(t, y2)
        k2  = f(t+0.5*h, y2+0.5*h*k1)    
        y2 += h*k2
 

        k1  = f(t, y4)
        k2  = f(t+0.5*h, y4+0.5*h*k1)
        k3  = f(t+0.5*h, y4+0.5*h*k2)
        k4  = f(t+h, y4+h*k3)                
        y4 += h/6.*(k1+2.*k2+2.*k3+k4)
 

        t += h
 

    vt[idx] = t
    vy[0,idx] = np.exp(t)
    vy[1,idx] = y1
    vy[2,idx] = y2
    vy[3,idx] = y4 partial l11-example-04.py

  ⇐ NumPy arrays for  
storing the output

  ⇐ Store the results

   Only keep the result
⇙ every 1000 steps.

RK4

RK2

Euler method



PRECISION  
EVOLUTION (II)
■ Just make a simple plot. 

■ The initial uncertainties are 
of O(h), O(h2), and O(h4).

■ After 200,000 steps or more, 
the accumulated errors can 
be large.
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plt.plot(vt,abs(vy[1]-vy[0])/vy[0],lw=2,c='Blue')
plt.plot(vt,abs(vy[2]-vy[0])/vy[0],lw=2,c='Green')
plt.plot(vt,abs(vy[3]-vy[0])/vy[0],lw=2,c='Red')
plt.yscale('log')
plt.ylim(1E-16,0.2)
plt.xlim(0.,200.)
plt.show()

partial l11-example-04.py

  ⇑ Draw the relative differences

Euler

RK2

RK4



INTERMISSION

■ It could be interesting to solve some other trivial differential 
equations with the methods introduced above, for example:  
 
 
 

■ Try to modify the previous example code (l11-example-04.py) and 
see how the error accumulated along with steps for a different 
differential equation.
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dy

dt
= �y

dy

dt
= cos(t)



A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM
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θ

R

m

mg

mg sinθ

mR
d2✓

dt2
= �mg sin ✓F = ma

d2✓

dt2
= � g

R
sin ✓

Solving 2nd order ODE =
Decompose into two 
1st order ODE:

d✓̇

dt
= f(✓, ✓̇, t) = � g

R
sin ✓

d✓

dt
= g(✓, ✓̇, t) = ✓̇

.... (1)

.... (2)



A LITTLE BIT OF PHYSICS:
SIMPLE PENDULUM (II)
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θ = 0.9999 π 

R = 1m

m = 1kg

g = 9.8m/s2

With a trial Initial condition 
at t = 0 :

{
Almost at the largest possible angle 
(No small angle approximation!  
Not a “simple” pendulum) 
Standstill at the beginning.

In principle it should stand for a moment, and 
start to falling down...

✓ = 0.9999⇡ ⇡ 3.141278...

✓̇ = 0



SOLVE FOR 2 ODE’S 
TOGETHER
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m, g, R = 1., 9.8, 1.
t, h = 0., 0.001
y = np.array([np.pi*0.9999,0.])
  

def f(t,y):     
    theta   = y[0] 
    thetap  = y[1]
    thetapp = -g/R*np.sin(theta)
  

    return np.array([thetap,thetapp])
  

while t<8.:        
    for step in range(100):
        k1  = f(t, y)
        y  += h*k1
        t  += h    
  

    theta  = y[0]
    thetap = y[1]   
    print 'At %.2f sec : (%+14.10f, %+14.10f)' % (t, theta, thetap)

l11-example-05.py

  ⇐ Initial condition t = 0 sec, stepping = 0.001 sec.
  ⇐ Initial θ and θ’

  ⇐ input array contains θ and θ’

  ⇐ output array contains θ’ and θ’’

  ⇐ solve for 100 steps (=0.1 sec)

  ⇐ Euler method



SOLVE FOR 2 ODE’S 
TOGETHER (II)

■ The terminal 
output:

■ Works, but not so 
straight forward... 
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At 0.10 sec : ( +3.1412631358,  -0.0003127772)
At 0.20 sec : ( +3.1412152508,  -0.0006561363)
At 0.30 sec : ( +3.1411301423,  -0.0010639557)
At 0.40 sec : ( +3.1409994419,  -0.0015764466)
At 0.50 sec : ( +3.1408102869,  -0.0022441174)
... ...

At 1.00 sec : ( +3.1380085436,  -0.0111772696)
... ...

At 1.50 sec : ( +3.1245199136,  -0.0534365650)
... ...

At 2.00 sec : ( +3.0601357015,  -0.2549284063)
... ...

At 2.50 sec : ( +2.7540224966,  -1.2057243644)
... ...

At 3.00 sec : ( +1.4037054845,  -4.7826081916)
... ...

At 4.00 sec : ( -2.7787118486,  -1.1997994809)
... ...

At 5.00 sec : ( -3.3781806892,  -0.8411792354)
... ...

✓̇ #✓ #

Let’s introduce some 
animations to 

demonstrate the motion!

  ⇖ wait, θ<–π!?



SIMPLE ANIMATION

■ It is easy to create animations with matplotlib. It is useful to 
demonstrate some of the results that suppose to “move” as a 
function of time!

■ Here are a very simple example code to show how it works!
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import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
  

fig = plt.figure(figsize=(6,6), dpi=80)
ax = plt.axes(xlim=(-1.,+1.), ylim=(-1.,+1.))
  

curve, = ax.plot([], [], lw=2, color='red')

partial l11-example-06.py  ⇑ initial empty object(s)

  ⇐ initial figure/axis

  ⇐ import animation package



SIMPLE ANIMATION (II)

■ The “core ” part of the code:
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def init():
    curve.set_data([], [])
    return curve,
  

def animate(i):
    t = np.linspace(0.,np.pi*2.,400)
    x = np.cos(t*6.)*np.cos(t+2.*np.pi*i/360.)
    y = np.cos(t*6.)*np.sin(t+2.*np.pi*i/360.)
  

    curve.set_data(x, y)
    return curve, 
  

anim = animation.FuncAnimation(fig, animate,
       init_func=init, frames=360, interval=40)
plt.show()

partial l11-example-06.py

This is the 
output:

  ⇖ update the data for frame index = i 
 (i is not an essential piece, it’s just a counter)

  ⇐ initial frame, all set to empty
  ⇐ have to return a tuple

Initial an animation of total 360 frame ⇖⇑ 
with 40 mini-sec wait interval (=25 FPS)



SOLVING ODE X 
ANIMATION
■ “Merge” two previous codes as following:
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fig = plt.figure(figsize=(6,6), dpi=80)
ax = plt.axes(xlim=(-1.2,+1.2), ylim=(-1.2,+1.2))
 

stick, = ax.plot([], [], lw=2, color='black')
ball,  = ax.plot([], [], 'ro', ms=10)
text   = ax.text(0.,1.1,'', fontsize = 16, color='black', 
         ha='center', va='center')
 

m, g, R = 1., 9.8, 1.
t, h = 0., 0.001
y = np.array([np.pi*0.9999,0.])
 

def f(t,y):     
    theta   = y[0] 
    thetap  = y[1]
    thetapp = -g/R*np.sin(theta)
 

    return np.array([thetap,thetapp]) partial l11-example-05a.py

  ⇖ initial empty objects: 

  ⇐ Initial θ and θ’

  ⇐ function for calculating θ’ and θ’’



def animate(i):
    global t,y
    

    for step in range(40):
        k1  = f(t, y)
        y  += h*k1
        t  += h    
    

    theta  = y[0]
    thetap = y[1] 
    bx =  np.sin(theta)
    by = -np.cos(theta)    
    ball.set_data(bx, by)                                                                                                                                                                              
    stick.set_data([0.,bx], [0.,by])
    

    E = m*g*by + 0.5*m*(R*thetap)**2
    text.set(text='E = %.16f' % E)
    

    return stick, ball, text
    

anim = animation.FuncAnimation(fig, animate, init_func=init,
       frames=10, interval=40)     

SOLVING ODE X 
ANIMATION (II)
■ Core animation + solving ODE:
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partial l11-example-05a.py

  ⇐ force t and y to be global variables

  ⇐ solve 40 steps  
(0.04 sec per frame)

  ⇐ plot the “ball” and “stick”

  ⇐ show the total energy

  ⇖“ball”

  ⇐“stick”

“text”⇑



DEMO TIME!
■ It moves! But you will find the solver does not work too good 

almost immediately; the energy is not even conserved!
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t = 0.5 sec t = 1.0 sec t = 1.5 sec t = 2.0 sec t = 2.5 sec

t = 3.0 sec t = 3.5 sec t = 4.0 sec t = 4.5 sec t = 5.0 sec



THAT’S WHY WE NEED A 
BETTER ODE SOLVER...
■ One can simply replace the core part of the code to “upgrade” the 

ODE solutions.
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    for step in range(40):
        k1  = f(t, y)
        k2  = f(t+0.5*h, y+0.5*h*k1)
        k3  = f(t+0.5*h, y+0.5*h*k2)
        k4  = f(t+h, y+h*k3)
        y  += h/6.*(k1+2.*k2+2.*k3+k4)
        t  += h   

partial l11-example-05c.py

    for step in range(40):
        k1  = f(t, y)
        k2  = f(t+0.5*h, y+0.5*h*k1)
        y  += h*k2     
        t  += h   

partial l11-example-05b.py

RK2

RK4
This RK4 routine will not 

easily break the total energy 
cap easily at least. 



USING THE ODE SOLVER 
FROM SCIPY
■ The ODE solver under SciPy is also available in scipy.integrate 

module, together with the numerical integration tools:
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http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate

http://docs.scipy.org/doc/scipy/reference/integrate.html#module-scipy.integrate


USING THE ODE SOLVER 
FROM SCIPY (II)
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 import numpy as np
 from scipy.integrate import ode
 

 m, g, R = 1., 9.8, 1.
 t, y = 0., np.array([np.pi*0.9999,0.])
 

 def f(t,y):     
     theta   = y[0] 
     thetap  = y[1]
     thetapp = -g/R*np.sin(theta)
     return np.array([thetap,thetapp])
 

 intr = ode(f).set_integrator('dop853')   
 intr.set_initial_value(y, t)
 

 while intr.t<8.:        
     intr.integrate(intr.t+0.1)
 

     theta  = intr.y[0]
     thetap = intr.y[1]  
     print 'At %.2f sec : (%+14.10f, %+14.10f)' \
       % (intr.t, theta, thetap)

l11-example-07.py

  ⇐ exactly the same f(x,y)

  ⇐ now t and y are 
just initial conditions

  ⇐ import the module

  ⇐ initialize the ode class
with ‘dop853’ integrator

  ⇐ solve to current time + 0.1 sec



USING THE ODE SOLVER 
FROM SCIPY (III)

■ It’s simply working 
smoothly.

■ There are few more 
different integrator 
available in the scipy 
ode class, e.g. 
“vode”, “zvode”, etc.

■ Please read the 
manual for details.

29

At 0.10 sec : ( +3.1412629744,  -0.0003129294)
At 0.20 sec : ( +3.1412148812,  -0.0006567772)
At 0.30 sec : ( +3.1411294629,  -0.0010655165)
At 0.40 sec : ( +3.1409982801,  -0.0015795319)
At 0.50 sec : ( +3.1408083714,  -0.0022496097)
... ...

At 1.00 sec : ( +3.1379909749,  -0.0112320574)
... ...

At 1.50 sec : ( +3.1243942321,  -0.0538299284)
... ...

At 2.00 sec : ( +3.0593354818,  -0.2574312087)
... ...

At 2.50 sec : ( +2.7492944690,  -1.2202273084)
... ...

At 3.00 sec : ( +1.3819060253,  -4.8249634626)
... ...

At 4.00 sec : ( -2.7713127817,  -1.1525482114)
... ...

At 5.00 sec : ( -3.1253649922,  -0.0507902190)
... ...

✓̇ #✓ #



USING THE ODE SOLVER 
FROM SCIPY (IV)
■ It’s also pretty easy to 

merge the ODE solver 
with animation.
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 m, g, R = 1., 9.8, 1.
 t = 0.
 y = np.array([np.pi*0.9999,0.])
  

 def f(t,y):     
     theta   = y[0] 
     thetap  = y[1]
     thetapp = -g/R*np.sin(theta)
  

     return np.array([thetap,thetapp])
  

 intr = ode(f).set_integrator('dop853')   
 intr.set_initial_value(y, t)
  

 def animate(i):
     intr.integrate(intr.t+0.040)
  

     theta  = intr.y[0]
     thetap = intr.y[1]

partial l11-example-07a.py

Initial the integrator

Replace the for-loop
with a single commend



INTERMISSION

■ What will happen if you given a critical initial condition to the 
preview simple pendulum example, e.g. 

■ It could be fun if you can try to record the angle versus time (this 
can be done by a small modification to l11-example-07.py), and 
make a plot. If you set the initial condition to a small angle (when 
the small angle approximation still works), will you see if your 
solution close to a sine/cosine function?

31

✓ = ⇡

✓̇ = 0



FEW MORE EXAMPLES FOR 
YOUR AMUSEMENT
■ Replace the “stick” with a spring:
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�mgĵ

(x, y)

f

x

= f · x
R

î

f

y

= f · y
R

ĵ

f = �k(R�R0)

R =
p

x

2 + y

2

R0 = 0.5m

m = 1kg

g = 9.8m/s2

k = 100 N/m

See  
l11-example-08.py

Coordinate (x,y) is used 
instead of (R,θ) here.

Need to solve 4 equations 
(x,y,vx,vy) simultaneously



ONE IS COOL,  
TWO ARE CHAOTIC?
■ A joint two-spring-ball system:
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�mgĵ

See  
l11-example-08a.py

(x1, y1)

(x2, y2)

�mgĵ

f2 = �k(R2 �R0) ·

(x2 � x1)

R2
î,

(y2 � y1)

R2
ĵ

�

f1 = �k(R1 �R0) ·

x1

R1
î,

y1

R1
ĵ

�

m = 1kg

k = 200 N/m
R0 = 0.3m

Need to solve 8 equations 
simultaneously



A CHAIN OF SPRING-BALL = 
A ROPE?
■ If we replace the “stick” with a rope, is it possible? Surely we need 

to use a simplified model to mimic a rope.
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M = 1kg

mRope = 0.1kg
R0 = 1m / Nseg

M = 1kg�mgĵ

m = 0.1kg / Nseg

k = 1000*Nseg N/m 
Nseg = 50

See  
l11-example-08b.py

�Mgĵ

fi = �k�Ri ·
✓
�xi

Ri
î,

�yi

Ri
ĵ

◆

# of equations:  
Nseg * 4 = 200



WAVE ON A STRING

■ Actually one can use a similar way to model a string –– construct a 
N segment (massive) string and solve it with small angle 
approximation. 
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dy1

dx

dy2

T = 1 N

dm

fi ⇡ T · (dy1
dx

+
dy2

dx

)

L = 1 m
M = 1 kg

Set the initial condition to be 
simple sine waves and solve 

for the wave!

v =

s
T

µ
=

r
TL

M
= f · �

See  
l11-example-09.py



WAVE ON A STRING (II)

■ It is also fun to record the vibration of the string, convert it to a 
wave file and play it out!
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For the case of T = 400 N, μ= 0.01 kg/m, λ= 1m,  
we are expecting to hear a 200 Hz sound! See  

l11-example-09a.py



COMMENTS

■ We have demonstrated several interesting examples, surely you 
are encouraged to modify the code and test some different physics 
parameters, or different initial conditions. 

■ Basically all of those tasks can be easily done with the given ODE 
solver. In any case these are examples are VERY PHYSICS!

■ Then – you may want to ask – how about PDEs? The general idea 
of PDE solving is similar but require some different 
implementations. There is no PDE solver available in SciPy yet. If 
you want, you can try the following packages: 

FiPy http://www.ctcms.nist.gov/fipy/ 
SfePy http://sfepy.org/doc-devel/index.html
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http://www.ctcms.nist.gov/fipy/
http://sfepy.org/doc-devel/index.html


HANDS-ON SESSION

■ Practice 1:  
Add some simple gravity to the system:  
there is a red star shooting toward the 
earth. Assuming the only acceleration 
between the earth and the red star is 
contributed by the gravitational force:  
 
 
with G×M = 1. Thus: 
 
 
implement the code and produce the 
animation.
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(0,0)
M

m
v0 = (1.0,0.5)

x0 = (-1.,-1.)

F =
GMm

r2
a = 1/r2

a =
dv

dt
= F/m =

1

r2



HANDS-ON SESSION

■ Practice 2:  
damped or driven oscillators – please solve the following system 
with the extra (damping/driving) force and the given physics 
parameters. 
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m

x

k = 10 N/m

0

m = 1 kg

Initial condition: t = 0 sec, x = +0.1 m
b = 0.2 Ns/m

d = 0.08 N
ω = π rad/s

fb = �b · dx
dt

or

fd = d · cos(!t)
or

fd = d · sin(!t)

fb or fd



HANDS-ON SESSION

■ Please start with the given template on CEIBA. It can produce the 
following plots if you solve them correctly.
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fb = �b · dx
dt

fd = d · cos(!t) fd = d · sin(!t)

You may also play around with some what different 
physics parameters as well as the initial conditions.


